The Role of Extensive Recombination in the Evolution of Geminiviruses.

3区 医学 Q2 Medicine
Elvira Fiallo-Olivé, Jesús Navas-Castillo
{"title":"The Role of Extensive Recombination in the Evolution of Geminiviruses.","authors":"Elvira Fiallo-Olivé,&nbsp;Jesús Navas-Castillo","doi":"10.1007/978-3-031-15640-3_4","DOIUrl":null,"url":null,"abstract":"<p><p>Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"439 ","pages":"139-166"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-15640-3_4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.

广泛重组在双病毒进化中的作用。
突变、重组和伪重组是推动病毒进化的主要力量,通过变异的产生,自然选择、遗传漂变和基因流动可以影响病毒种群的遗传结构。共同感染同一细胞的相关病毒基因组之间的重组通常在复制过程中通过模板交换发生,并产生嵌合基因组。双病毒科在植物病毒科中表现出最高的进化成功,其基因组中普遍存在的重组特征揭示了其进化中的关键作用。本文综述了双子星病毒科成员和相关DNA卫星的一般特征,以及从毒株到科在所有分类水平上广泛发生的重组。本文还概述了在自然界中观察到的重组模式,为重组基因组的产生和出现提供了一些线索。此外,还总结了实验进化研究的结果,这些结果支持了在描述或计算机作品中获得的一些结论。最后,该综述使用了一些案例研究来说明那些具有进化和病理意义的重组事件,以及涉及DNA卫星的重组事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信