Population pharmacokinetic and pharmacokinetic-pharmacodynamic modeling of bempedoic acid and low-density lipoprotein cholesterol in healthy subjects and patients with dyslipidemia.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Satyawan B Jadhav, Benny M Amore, Howard Bockbrader, Ryan L Crass, Sunny Chapel, William J Sasiela, Maurice G Emery
{"title":"Population pharmacokinetic and pharmacokinetic-pharmacodynamic modeling of bempedoic acid and low-density lipoprotein cholesterol in healthy subjects and patients with dyslipidemia.","authors":"Satyawan B Jadhav,&nbsp;Benny M Amore,&nbsp;Howard Bockbrader,&nbsp;Ryan L Crass,&nbsp;Sunny Chapel,&nbsp;William J Sasiela,&nbsp;Maurice G Emery","doi":"10.1007/s10928-023-09864-w","DOIUrl":null,"url":null,"abstract":"<p><p>Population pharmacokinetics (popPK) of bempedoic acid and the popPK/pharmacodynamic (popPK/PD) relationship between bempedoic acid concentrations and serum low-density lipoprotein cholesterol (LDL-C) from baseline were characterized. A two-compartment disposition model with a transit absorption compartment and linear elimination best described bempedoic acid oral pharmacokinetics (PK). Multiple covariates, including renal function, sex, and weight, had statistically significant effects on the predicted steady-state area under the curve. Mild (estimated glomerular filtration rate (eGFR) 60 to < 90 mL/min vs. ≥ 90 mL/min) and moderate (eGFR 30 to < 60 mL/min vs. ≥ 90 mL/min) renal impairment, female sex, low (< 70 kg vs. 70-100 kg) and high (> 100 kg vs. 70-100 kg) body weight were predicted to have a 1.36-fold (90% confidence interval (CI) 1.32, 1.41), 1.85-fold (90% CI 1.74, 2.00), 1.39-fold (90% CI 1.34, 1.47), 1.35-fold (90% CI 1.30, 1.41), and 0.75-fold (90% CI 0.72, 0.79) exposure difference relative to their reference populations, respectively. An indirect response model described changes in serum LDL-C with a model-predicted 35% maximal reduction and bempedoic acid IC<sub>50</sub> of 3.17 µg/mL. A 28% reduction from LDL-C baseline was predicted for a steady-state average concentration of 12.5 µg/mL after bempedoic acid (180 mg/day) dosing, accounting for approximately 80% of the predicted maximal LDL-C reduction. Concurrent statin therapy, regardless of intensity, reduced the maximal effect of bempedoic acid but resulted in similar steady-state LDL-C levels. While multiple covariates had statistically significant effects on PK and LDL-C lowering, none were predicted to warrant bempedoic acid dose adjustment.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"50 5","pages":"351-364"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460718/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09864-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

Abstract

Population pharmacokinetics (popPK) of bempedoic acid and the popPK/pharmacodynamic (popPK/PD) relationship between bempedoic acid concentrations and serum low-density lipoprotein cholesterol (LDL-C) from baseline were characterized. A two-compartment disposition model with a transit absorption compartment and linear elimination best described bempedoic acid oral pharmacokinetics (PK). Multiple covariates, including renal function, sex, and weight, had statistically significant effects on the predicted steady-state area under the curve. Mild (estimated glomerular filtration rate (eGFR) 60 to < 90 mL/min vs. ≥ 90 mL/min) and moderate (eGFR 30 to < 60 mL/min vs. ≥ 90 mL/min) renal impairment, female sex, low (< 70 kg vs. 70-100 kg) and high (> 100 kg vs. 70-100 kg) body weight were predicted to have a 1.36-fold (90% confidence interval (CI) 1.32, 1.41), 1.85-fold (90% CI 1.74, 2.00), 1.39-fold (90% CI 1.34, 1.47), 1.35-fold (90% CI 1.30, 1.41), and 0.75-fold (90% CI 0.72, 0.79) exposure difference relative to their reference populations, respectively. An indirect response model described changes in serum LDL-C with a model-predicted 35% maximal reduction and bempedoic acid IC50 of 3.17 µg/mL. A 28% reduction from LDL-C baseline was predicted for a steady-state average concentration of 12.5 µg/mL after bempedoic acid (180 mg/day) dosing, accounting for approximately 80% of the predicted maximal LDL-C reduction. Concurrent statin therapy, regardless of intensity, reduced the maximal effect of bempedoic acid but resulted in similar steady-state LDL-C levels. While multiple covariates had statistically significant effects on PK and LDL-C lowering, none were predicted to warrant bempedoic acid dose adjustment.

Abstract Image

Abstract Image

Abstract Image

苯二酸和低密度脂蛋白胆固醇在健康受试者和血脂异常患者中的群体药代动力学和药代动力学药效学建模。
研究了苯磺酸的群体药代动力学(popPK)以及苯磺酸浓度与血清低密度脂蛋白胆固醇(LDL-C)之间的popPK/PD关系。一个具有转运吸收区和线性消除的两区室配置模型最能描述苯磺酸口服药代动力学(PK)。多个协变量,包括肾功能、性别和体重,对预测的曲线下稳态面积有统计学显著影响。轻度(估计肾小球滤过率(eGFR)60至  100 kg与70-100 kg)体重的暴露差异预测为其参考人群的1.36倍(90%置信区间(CI)1.32,1.41)、1.85倍(90%CI 1.74,2.00)、1.39倍(90%CI1.34,1.47)、1.35倍(90%CI1.30,1.41和0.75倍(90%CI0.72,0.79)。一个间接反应模型描述了血清LDL-C的变化,该模型预测LDL-C最大降低35%,苯甲酸IC50为3.17µg/mL。苯甲酸(180 mg/天)给药后,稳态平均浓度为12.5µg/mL,LDL-C比基线降低28%,约占预测的最大LDL-C降低的80%。同时进行他汀类药物治疗,无论强度如何,都会降低贝米多酸的最大作用,但会导致类似的稳态LDL-C水平。虽然多个协变量对PK和LDL-C的降低有统计学意义的影响,但没有一个协变量被预测为需要调整苯磺酸剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信