{"title":"Mobile Health-Supported Active Syndrome Surveillance for COVID-19 Early Case Finding in Addis Ababa, Ethiopia: Comparative Study.","authors":"Haileleul Bisrat, Tsegahun Manyazewal, Abebaw Fekadu","doi":"10.2196/43492","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since most people in low-income countries do not have access to reliable laboratory services, early diagnosis of life-threatening diseases like COVID-19 remains challenging. Facilitating real-time assessment of the health status in a given population, mobile health (mHealth)-supported syndrome surveillance might help identify disease conditions earlier and save lives cost-effectively.</p><p><strong>Objective: </strong>This study aimed to evaluate the potential use of mHealth-supported active syndrome surveillance for COVID-19 early case finding in Addis Ababa, Ethiopia.</p><p><strong>Methods: </strong>A comparative cross-sectional study was conducted among adults randomly selected from the Ethio telecom list of mobile phone numbers. Participants underwent a comprehensive phone interview for COVID-19 syndromic assessments, and their symptoms were scored and interpreted based on national guidelines. Participants who exhibited COVID-19 syndromes were advised to have COVID-19 diagnostic testing at nearby health care facilities and seek treatment accordingly. Participants were asked about their test results, and these were cross-checked against the actual facility-based data. Estimates of COVID-19 detection by mHealth-supported syndromic assessments and facility-based tests were compared using Cohen Kappa (κ), the receiver operating characteristic curve, sensitivity, and specificity analysis.</p><p><strong>Results: </strong>A total of 2741 adults (n=1476, 53.8% men and n=1265, 46.2% women) were interviewed through the mHealth platform during the period from December 2021 to February 2022. Among them, 1371 (50%) had COVID-19 symptoms at least once and underwent facility-based COVID-19 diagnostic testing as self-reported, with 884 (64.5%) confirmed cases recorded in facility-based registries. The syndrome assessment model had an optimal likelihood cut-off point sensitivity of 46% (95% CI 38.4-54.6) and specificity of 98% (95% CI 96.7-98.9). The area under the receiver operating characteristic curve was 0.87 (95% CI 0.83-0.91). The level of agreement between the mHealth-supported syndrome assessment and the COVID-19 test results was moderate (κ=0.54, 95% CI 0.46-0.60).</p><p><strong>Conclusions: </strong>In this study, the level of agreement between the mHealth-supported syndromic assessment and the actual laboratory-confirmed results for COVID-19 was found to be reasonable, at 89%. The mHealth-supported syndromic assessment of COVID-19 represents a potential alternative method to the standard laboratory-based confirmatory diagnosis, enabling the early detection of COVID-19 cases in hard-to-reach communities, and informing patients about self-care and disease management in a cost-effective manner. These findings can guide future research efforts in developing and integrating digital health into continuous active surveillance of emerging infectious diseases.</p>","PeriodicalId":51757,"journal":{"name":"Interactive Journal of Medical Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive Journal of Medical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/43492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Since most people in low-income countries do not have access to reliable laboratory services, early diagnosis of life-threatening diseases like COVID-19 remains challenging. Facilitating real-time assessment of the health status in a given population, mobile health (mHealth)-supported syndrome surveillance might help identify disease conditions earlier and save lives cost-effectively.
Objective: This study aimed to evaluate the potential use of mHealth-supported active syndrome surveillance for COVID-19 early case finding in Addis Ababa, Ethiopia.
Methods: A comparative cross-sectional study was conducted among adults randomly selected from the Ethio telecom list of mobile phone numbers. Participants underwent a comprehensive phone interview for COVID-19 syndromic assessments, and their symptoms were scored and interpreted based on national guidelines. Participants who exhibited COVID-19 syndromes were advised to have COVID-19 diagnostic testing at nearby health care facilities and seek treatment accordingly. Participants were asked about their test results, and these were cross-checked against the actual facility-based data. Estimates of COVID-19 detection by mHealth-supported syndromic assessments and facility-based tests were compared using Cohen Kappa (κ), the receiver operating characteristic curve, sensitivity, and specificity analysis.
Results: A total of 2741 adults (n=1476, 53.8% men and n=1265, 46.2% women) were interviewed through the mHealth platform during the period from December 2021 to February 2022. Among them, 1371 (50%) had COVID-19 symptoms at least once and underwent facility-based COVID-19 diagnostic testing as self-reported, with 884 (64.5%) confirmed cases recorded in facility-based registries. The syndrome assessment model had an optimal likelihood cut-off point sensitivity of 46% (95% CI 38.4-54.6) and specificity of 98% (95% CI 96.7-98.9). The area under the receiver operating characteristic curve was 0.87 (95% CI 0.83-0.91). The level of agreement between the mHealth-supported syndrome assessment and the COVID-19 test results was moderate (κ=0.54, 95% CI 0.46-0.60).
Conclusions: In this study, the level of agreement between the mHealth-supported syndromic assessment and the actual laboratory-confirmed results for COVID-19 was found to be reasonable, at 89%. The mHealth-supported syndromic assessment of COVID-19 represents a potential alternative method to the standard laboratory-based confirmatory diagnosis, enabling the early detection of COVID-19 cases in hard-to-reach communities, and informing patients about self-care and disease management in a cost-effective manner. These findings can guide future research efforts in developing and integrating digital health into continuous active surveillance of emerging infectious diseases.