Thomas Shepherd, Matthew Kennett, Andrew Cooper, Adrian Parkinson
{"title":"<i>In Vitro</i> Performance of the Wixela Inhub Inhaler Using Severe Chronic Obstructive Pulmonary Disease Patient Inhalation Profiles.","authors":"Thomas Shepherd, Matthew Kennett, Andrew Cooper, Adrian Parkinson","doi":"10.1089/jamp.2021.0017","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Wixela Inhub (trademarks of Viatris, Inc.) is a dry powder inhaler (DPI) that delivers a fixed-dose combination of fluticasone propionate and salmeterol and is approved as a generic equivalent to Advair Diskus (trademarks of GlaxoSmithKline plc) for the treatment of asthma and chronic obstructive pulmonary disease (COPD). The dosing performance of DPIs is dependent on the patient's inspiratory capability, which may be impacted in disease populations such as those with severe COPD. The objective of this study was to evaluate the <i>in vitro</i> dose delivery of fluticasone propionate and salmeterol from the Inhub inhaler with <i>in vivo</i> inhalation profiles of severe COPD patients, using two types of breathing simulator with different modes of operation. <b><i>Materials and Methods:</i></b> Two breathing simulators (Si-Plan and Copley BRS3100) were used with United States Pharmacopoeia (USP) <601> apparatus 5 (Next Generation Impactor and accessories) to measure the total emitted dose and fine particle mass of fluticasone propionate and salmeterol for Wixela Inhub (250/50 mcg) using 13 severe COPD patient inhalation profiles. <b><i>Results:</i></b> Wixela Inhub demonstrated low flow dependency across the range of COPD patient profiles tested (peak inspiratory flow rate 60.8-84.9 L minute<sup>-1</sup>), when assessed by total emitted dose and fine particle mass. The results were similar to literature results reported for fluticasone propionate from the Diskus inhaler, tested using a proprietary breathing simulator and Andersen Cascade Impactor. Comparison between the breathing simulators showed no significant difference in fluticasone propionate results, but a small difference was observed between the breathing simulators for salmeterol total emitted dose and fine particle mass. <b><i>Conclusions:</i></b> This study demonstrates that severe COPD patients are likely to achieve a consistent inhaled dose from Wixela Inhub, with low flow dependency observed within this patient population. In addition, both breathing simulators, which differ significantly in design, produced similar results for fluticasone propionate, but yielded slightly (but statistically significant) different results for salmeterol.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"35 3","pages":"154-165"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/5e/jamp.2021.0017.PMC9242708.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2021.0017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Wixela Inhub (trademarks of Viatris, Inc.) is a dry powder inhaler (DPI) that delivers a fixed-dose combination of fluticasone propionate and salmeterol and is approved as a generic equivalent to Advair Diskus (trademarks of GlaxoSmithKline plc) for the treatment of asthma and chronic obstructive pulmonary disease (COPD). The dosing performance of DPIs is dependent on the patient's inspiratory capability, which may be impacted in disease populations such as those with severe COPD. The objective of this study was to evaluate the in vitro dose delivery of fluticasone propionate and salmeterol from the Inhub inhaler with in vivo inhalation profiles of severe COPD patients, using two types of breathing simulator with different modes of operation. Materials and Methods: Two breathing simulators (Si-Plan and Copley BRS3100) were used with United States Pharmacopoeia (USP) <601> apparatus 5 (Next Generation Impactor and accessories) to measure the total emitted dose and fine particle mass of fluticasone propionate and salmeterol for Wixela Inhub (250/50 mcg) using 13 severe COPD patient inhalation profiles. Results: Wixela Inhub demonstrated low flow dependency across the range of COPD patient profiles tested (peak inspiratory flow rate 60.8-84.9 L minute-1), when assessed by total emitted dose and fine particle mass. The results were similar to literature results reported for fluticasone propionate from the Diskus inhaler, tested using a proprietary breathing simulator and Andersen Cascade Impactor. Comparison between the breathing simulators showed no significant difference in fluticasone propionate results, but a small difference was observed between the breathing simulators for salmeterol total emitted dose and fine particle mass. Conclusions: This study demonstrates that severe COPD patients are likely to achieve a consistent inhaled dose from Wixela Inhub, with low flow dependency observed within this patient population. In addition, both breathing simulators, which differ significantly in design, produced similar results for fluticasone propionate, but yielded slightly (but statistically significant) different results for salmeterol.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.