The role of paracrine crosstalk between myeloid and endothelial cells in myocardial angiogenesis and infarcted heart repair.

Kyu-Won Cho, Seongho Bae, Young-Sup Yoon
{"title":"The role of paracrine crosstalk between myeloid and endothelial cells in myocardial angiogenesis and infarcted heart repair.","authors":"Kyu-Won Cho, Seongho Bae, Young-Sup Yoon","doi":"10.20517/jca.2022.37","DOIUrl":null,"url":null,"abstract":"Ischemic heart disease is one of the leading causes of morbidity and mortality in the USA. It is mainly caused by the narrowing or occlusion of coronary arteries by plaque buildup, leading to a limited supply of oxygen and nutrients to the cardiac muscle. This results in necrotic death of cardiomyocytes (CMs). CM necrosis leads to the production of cytokines, chemokines, and damage-associated molecular patterns (DAMPs), which recruit immune cells from the bone marrow (BM) [1] . Infiltrated immune cells secrete proteases and cytokines that mediate inflammatory responses and fibroblast activation [1] . Subsequently, the damaged cardiac muscle is replaced with extracellular matrix produced by activated fibroblasts, leading to myocardial remodeling and dysfunction. Attempts to restore blood vessels (a.k.a. therapeutic angiogenesis) reduced fibrosis and improved the performance of the infarcted heart [2] . A possible underlying mechanism is that the supply of oxygen and nutrients via new blood vessels would preserve CM survival and support the health and function of remaining cardiovascular cells, thereby preventing adverse cardiac remodeling. Thus, therapeutic angiogenesis has been considered one of the important therapeutic approaches for ischemic heart diseases. Investigations","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2022.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic heart disease is one of the leading causes of morbidity and mortality in the USA. It is mainly caused by the narrowing or occlusion of coronary arteries by plaque buildup, leading to a limited supply of oxygen and nutrients to the cardiac muscle. This results in necrotic death of cardiomyocytes (CMs). CM necrosis leads to the production of cytokines, chemokines, and damage-associated molecular patterns (DAMPs), which recruit immune cells from the bone marrow (BM) [1] . Infiltrated immune cells secrete proteases and cytokines that mediate inflammatory responses and fibroblast activation [1] . Subsequently, the damaged cardiac muscle is replaced with extracellular matrix produced by activated fibroblasts, leading to myocardial remodeling and dysfunction. Attempts to restore blood vessels (a.k.a. therapeutic angiogenesis) reduced fibrosis and improved the performance of the infarcted heart [2] . A possible underlying mechanism is that the supply of oxygen and nutrients via new blood vessels would preserve CM survival and support the health and function of remaining cardiovascular cells, thereby preventing adverse cardiac remodeling. Thus, therapeutic angiogenesis has been considered one of the important therapeutic approaches for ischemic heart diseases. Investigations

Abstract Image

髓细胞和内皮细胞间的旁分泌串扰在心肌血管生成和心肌梗死修复中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信