{"title":"Measurement of Pharmacokinetics and Tissue Distribution of Four Compounds from <i>Nauclea officinalis</i> in Rat Plasma and Tissues through HPLC-MS/MS.","authors":"Yuhuang Wu, Liyan Li, Guxu Ming, Xinyue Ma, Changfu Liang, Yonghui Li, Xiaoning He","doi":"10.1155/2022/5297603","DOIUrl":null,"url":null,"abstract":"<p><p>A rapid, sensitive, selective, and accurate HPLC-MS/MS method was developed and validated for the simultaneous determination of chlorogenic acid, naucleactonin C, khaephuoside A 3,4-dimethoxyphenyl-1-O-<i>β</i>-apiofuroseyl(1 ⟶ 2)-<i>β</i>-D-glucopyranoside in rat plasma and tissues after oral administration of <i>Nauclea officinalis</i> extracts. Chloramphenicol was used as an internal standard (IS). The plasma and tissue samples were extracted by protein precipitation with methanol-ethyl acetate (1 : 1, v/v) including 0.1% (v/v) formic acid. The chromatographic separation was achieved by using an C18 column with gradient elution using mobile phase, which consisted of 0.1% formic acid water (A) and acetonitrile (B) and the flow rate of 0.8 mL/min. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode utilizing electrospray ionization (ESI) in negative mode. The developed method exhibited good linearity (determination coefficients, <i>R</i> <sup>2</sup> ≥ 0.9849), and the lower limits of quantification were 2, 5, 5, and 25 ng/mL for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-<i>β</i>-apiofuroseyl(1 ⟶ 2)-<i>β</i>-D-glucopyranoside. The intraday and interday precisions (relative standard deviation, RSD) were less than 12.65%, while the accuracy was ranged from 86.31 to 114.17%. The recovery rate were 51.85-97.06%, 75.99-106.68%, 77.46-105.35%, and 68.36-103.75% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-<i>β</i>-apiofuroseyl(1 ⟶ 2)-<i>β</i>-D-glucopyranoside the matrix effects were 50.17-116.62%, 86.75-115.99%, 45.79-87.44%, and 51.60-92.34% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-<i>β</i>-apiofuroseyl(1 ⟶ 2)-<i>β</i>-D-glucopyranoside in different matrix. The developed method was successfully applied to a pharmacokinetic study and tissue distribution of four compounds in rats after oral administration of <i>Nauclea officinalis</i> extracts.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2022 ","pages":"5297603"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/5297603","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A rapid, sensitive, selective, and accurate HPLC-MS/MS method was developed and validated for the simultaneous determination of chlorogenic acid, naucleactonin C, khaephuoside A 3,4-dimethoxyphenyl-1-O-β-apiofuroseyl(1 ⟶ 2)-β-D-glucopyranoside in rat plasma and tissues after oral administration of Nauclea officinalis extracts. Chloramphenicol was used as an internal standard (IS). The plasma and tissue samples were extracted by protein precipitation with methanol-ethyl acetate (1 : 1, v/v) including 0.1% (v/v) formic acid. The chromatographic separation was achieved by using an C18 column with gradient elution using mobile phase, which consisted of 0.1% formic acid water (A) and acetonitrile (B) and the flow rate of 0.8 mL/min. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode utilizing electrospray ionization (ESI) in negative mode. The developed method exhibited good linearity (determination coefficients, R2 ≥ 0.9849), and the lower limits of quantification were 2, 5, 5, and 25 ng/mL for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-β-apiofuroseyl(1 ⟶ 2)-β-D-glucopyranoside. The intraday and interday precisions (relative standard deviation, RSD) were less than 12.65%, while the accuracy was ranged from 86.31 to 114.17%. The recovery rate were 51.85-97.06%, 75.99-106.68%, 77.46-105.35%, and 68.36-103.75% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-β-apiofuroseyl(1 ⟶ 2)-β-D-glucopyranoside the matrix effects were 50.17-116.62%, 86.75-115.99%, 45.79-87.44%, and 51.60-92.34% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-β-apiofuroseyl(1 ⟶ 2)-β-D-glucopyranoside in different matrix. The developed method was successfully applied to a pharmacokinetic study and tissue distribution of four compounds in rats after oral administration of Nauclea officinalis extracts.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.