Xiaoxuan Wang, Song Xiang, Chunxuan Qi, Mingyu Chen, Xiaolong Su, Jun-Cheng Yang, Jingjing Tian, Hai-Tao Feng* and Ben Zhong Tang*,
{"title":"Visualization of Enantiorecognition and Resolution by Chiral AIEgens","authors":"Xiaoxuan Wang, Song Xiang, Chunxuan Qi, Mingyu Chen, Xiaolong Su, Jun-Cheng Yang, Jingjing Tian, Hai-Tao Feng* and Ben Zhong Tang*, ","doi":"10.1021/acsnano.2c01981","DOIUrl":null,"url":null,"abstract":"<p >Enantioselective recognition and separation have attracted much attention in pharmaceutical analysis, food chemistry, and life science. Herein, we propose an efficient strategy to achieve such purposes using optically active luminogens with aggregation-induced emission (AIE) characteristics. These AIE luminogens (AIEgens) show strong enantiomeric discrimination for 12 kinds of chiral acids and unprotected amino acids. In particular, an exceptionally high enantioselectivity for <span>d</span>/<span>l</span>-Boc-glutamic acid was observed, as demonstrated by the large difference between the formed AIEgen/acid complexes. Due to the AIE effect, enantioselective separation was achieved by aggregation of the AIEgens with one enantiomer in the mixed acid solution. Through analysis of the fluorescence standard curve, the aggregates of AIEgen/chiral acid possessed 90% <span>d</span>-analyte, from which the enantiomeric excess (ee) value was assessed to be 80% ee. Such a result is in good agreement with that (91% <span>d</span>-analyte and 82% ee) by chiral HPLC analysis. Thus, this simple one-step aggregation method can serve as a preliminary screening tool for high-throughput analysis or separation of chiral chemicals.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 5","pages":"8223–8232"},"PeriodicalIF":15.8000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.2c01981","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
Enantioselective recognition and separation have attracted much attention in pharmaceutical analysis, food chemistry, and life science. Herein, we propose an efficient strategy to achieve such purposes using optically active luminogens with aggregation-induced emission (AIE) characteristics. These AIE luminogens (AIEgens) show strong enantiomeric discrimination for 12 kinds of chiral acids and unprotected amino acids. In particular, an exceptionally high enantioselectivity for d/l-Boc-glutamic acid was observed, as demonstrated by the large difference between the formed AIEgen/acid complexes. Due to the AIE effect, enantioselective separation was achieved by aggregation of the AIEgens with one enantiomer in the mixed acid solution. Through analysis of the fluorescence standard curve, the aggregates of AIEgen/chiral acid possessed 90% d-analyte, from which the enantiomeric excess (ee) value was assessed to be 80% ee. Such a result is in good agreement with that (91% d-analyte and 82% ee) by chiral HPLC analysis. Thus, this simple one-step aggregation method can serve as a preliminary screening tool for high-throughput analysis or separation of chiral chemicals.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.