Yukio Otsuka, Srinivasu Poondru, Peter L Bonate, Rachel H Rose, Masoud Jamei, Fumihiko Ushigome, Tsuyoshi Minematsu
{"title":"Physiologically-based pharmacokinetic modeling to predict drug-drug interaction of enzalutamide with combined P-gp and CYP3A substrates.","authors":"Yukio Otsuka, Srinivasu Poondru, Peter L Bonate, Rachel H Rose, Masoud Jamei, Fumihiko Ushigome, Tsuyoshi Minematsu","doi":"10.1007/s10928-023-09867-7","DOIUrl":null,"url":null,"abstract":"<p><p>Enzalutamide is known to strongly induce cytochrome P450 3A4 (CYP3A4). Furthermore, enzalutamide showed induction and inhibition of P-glycoprotein (P-gp) in in vitro studies. A clinical drug-drug interaction (DDI) study between enzalutamide and digoxin, a typical P-gp substrate, suggested enzalutamide has weak inhibitory effect on P-gp substrates. Direct oral anticoagulants (DOACs), such as apixaban and rivaroxaban, are dual substrates of CYP3A4 and P-gp, and hence it is recommended to avoid co-administration of these DOACs with combined P-gp and strong CYP3A inducers. Enzalutamide's net effect on P-gp and CYP3A for apixaban and rivaroxaban plasma exposures is of interest to physicians who treat patients for venous thromboembolism with prostate cancer. Accordingly, a physiologically-based pharmacokinetic (PBPK) analysis was performed to predict the magnitude of DDI on apixaban and rivaroxaban exposures in the presence of 160 mg once-daily dosing of enzalutamide. The PBPK models of enzalutamide and M2, a major metabolite of enzalutamide which also has potential to induce CYP3A and P-gp and inhibit P-gp, were developed and verified as perpetrators of CYP3A-and P-gp-mediated interaction. Simulation results predicted a 31% decrease in AUC and no change in C<sub>max</sub> for apixaban and a 45% decrease in AUC and a 25% decrease in C<sub>max</sub> for rivaroxaban when 160 mg multiple doses of enzalutamide were co-administered. In summary, enzalutamide is considered to decrease apixaban and rivaroxaban exposure through the combined effects of CYP3A induction and net P-gp inhibition. Concurrent use of these drugs warrants careful monitoring for efficacy and safety.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"50 5","pages":"365-376"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09867-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzalutamide is known to strongly induce cytochrome P450 3A4 (CYP3A4). Furthermore, enzalutamide showed induction and inhibition of P-glycoprotein (P-gp) in in vitro studies. A clinical drug-drug interaction (DDI) study between enzalutamide and digoxin, a typical P-gp substrate, suggested enzalutamide has weak inhibitory effect on P-gp substrates. Direct oral anticoagulants (DOACs), such as apixaban and rivaroxaban, are dual substrates of CYP3A4 and P-gp, and hence it is recommended to avoid co-administration of these DOACs with combined P-gp and strong CYP3A inducers. Enzalutamide's net effect on P-gp and CYP3A for apixaban and rivaroxaban plasma exposures is of interest to physicians who treat patients for venous thromboembolism with prostate cancer. Accordingly, a physiologically-based pharmacokinetic (PBPK) analysis was performed to predict the magnitude of DDI on apixaban and rivaroxaban exposures in the presence of 160 mg once-daily dosing of enzalutamide. The PBPK models of enzalutamide and M2, a major metabolite of enzalutamide which also has potential to induce CYP3A and P-gp and inhibit P-gp, were developed and verified as perpetrators of CYP3A-and P-gp-mediated interaction. Simulation results predicted a 31% decrease in AUC and no change in Cmax for apixaban and a 45% decrease in AUC and a 25% decrease in Cmax for rivaroxaban when 160 mg multiple doses of enzalutamide were co-administered. In summary, enzalutamide is considered to decrease apixaban and rivaroxaban exposure through the combined effects of CYP3A induction and net P-gp inhibition. Concurrent use of these drugs warrants careful monitoring for efficacy and safety.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.