Circulating metabolites in the early stage of breast cancer were not related to cancer stage or subtypes but associated with ki67 level. Promising statistical discrimination from controls
Eva Baranovicova , Peter Racay , Pavol Zubor , Marek Smolar , Eva Kudelova , Erika Halasova , Dana Dvorska , Zuzana Dankova
{"title":"Circulating metabolites in the early stage of breast cancer were not related to cancer stage or subtypes but associated with ki67 level. Promising statistical discrimination from controls","authors":"Eva Baranovicova , Peter Racay , Pavol Zubor , Marek Smolar , Eva Kudelova , Erika Halasova , Dana Dvorska , Zuzana Dankova","doi":"10.1016/j.mcp.2022.101862","DOIUrl":null,"url":null,"abstract":"<div><p>It was documented that the presence of malignancy in an organism causes metabolomic alterations in blood plasma which applies also to breast cancer. Breast cancer is a heterogeneous disease and there are only limited known relations of plasma metabolomic signatures with the tumour characteristics in early BC and knowing them would be of great advantage in noninvasive diagnostics. In this study, we focused on the metabolic alterations in early BC in blood plasma with the aim to identify metabolomic characteristics of BC subtypes. We used 50 early BC patients (FIGO stage I and II), where no additional metabolomic changes from metastatically changed remote organs were to be expected. We compared plasma levels of metabolites against controls and among various molecular and histological BC subtypes. BC patients showed decreased plasma levels of branched-chain amino acids BCAAs (and related keto-acids), histidine pyruvate and alanine balanced with an increased level of 3-hydroxybutyrate. The levels of circulating metabolites were not related to BC molecular subtypes (luminal A/luminal B), histological finding or grade, eventually stage, which indicate that in early BC, the BC patients share common metabolomics fingerprint in blood plasma independent of grade, stage or molecular subtype of BC. We observed statistically significant correlations between tumour proliferation marker Ki-67 level and circulating metabolites: alanine, citrate, tyrosine, glutamine, histidine and proline. This may point out the metabolites those levels could be associated with tumour growth, and conversely, the rate of tumour proliferation could be potentially estimated from plasma metabolites. When analyzing metabolomic changes in BC, we concluded that some of them could be associated with the metabolomic features of cancer cells, but the other observed alterations in blood plasma are the results of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication. In the end, statistical discrimination against controls performed with AUC >0.91 showed the very promising potential of plasma metabolomics in the search for biomarkers for oncologic diseases.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850822000731/pdfft?md5=9796eea58ccaeab8dc304c88036ef14c&pid=1-s2.0-S0890850822000731-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850822000731","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
It was documented that the presence of malignancy in an organism causes metabolomic alterations in blood plasma which applies also to breast cancer. Breast cancer is a heterogeneous disease and there are only limited known relations of plasma metabolomic signatures with the tumour characteristics in early BC and knowing them would be of great advantage in noninvasive diagnostics. In this study, we focused on the metabolic alterations in early BC in blood plasma with the aim to identify metabolomic characteristics of BC subtypes. We used 50 early BC patients (FIGO stage I and II), where no additional metabolomic changes from metastatically changed remote organs were to be expected. We compared plasma levels of metabolites against controls and among various molecular and histological BC subtypes. BC patients showed decreased plasma levels of branched-chain amino acids BCAAs (and related keto-acids), histidine pyruvate and alanine balanced with an increased level of 3-hydroxybutyrate. The levels of circulating metabolites were not related to BC molecular subtypes (luminal A/luminal B), histological finding or grade, eventually stage, which indicate that in early BC, the BC patients share common metabolomics fingerprint in blood plasma independent of grade, stage or molecular subtype of BC. We observed statistically significant correlations between tumour proliferation marker Ki-67 level and circulating metabolites: alanine, citrate, tyrosine, glutamine, histidine and proline. This may point out the metabolites those levels could be associated with tumour growth, and conversely, the rate of tumour proliferation could be potentially estimated from plasma metabolites. When analyzing metabolomic changes in BC, we concluded that some of them could be associated with the metabolomic features of cancer cells, but the other observed alterations in blood plasma are the results of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication. In the end, statistical discrimination against controls performed with AUC >0.91 showed the very promising potential of plasma metabolomics in the search for biomarkers for oncologic diseases.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.