Follicle-Stimulating Hormone Accelerates Atherosclerosis by Activating PI3K/Akt/NF-κB Pathway in Mice with Androgen Deprivation.

IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE
Jingyu Piao, Yifan Yin, Yaru Zhao, Yi Han, Huixia Zhan, Duosheng Luo, Jiao Guo
{"title":"Follicle-Stimulating Hormone Accelerates Atherosclerosis by Activating PI3K/Akt/NF-κB Pathway in Mice with Androgen Deprivation.","authors":"Jingyu Piao,&nbsp;Yifan Yin,&nbsp;Yaru Zhao,&nbsp;Yi Han,&nbsp;Huixia Zhan,&nbsp;Duosheng Luo,&nbsp;Jiao Guo","doi":"10.1159/000527239","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Follicle-stimulating hormone (FSH) level changes may be another reason for increasing the risk of cardiovascular disease. In this study, we aimed to investigate the role of FSH in atherosclerosis and its underlying mechanism.</p><p><strong>Methods: </strong>ApoE-/- mice were divided into 4 groups, namely, the sham group, bilaterally orchidectomized group, FSH group, and testosterone-only group. Blood lipid and hormone levels were tested, aorta Oil Red O staining; the levels of NF-κB, Akt, eNOS, and FSH receptors in the aorta were measured by Western blotting. Expression of VCAM-1 was detected via Western blotting and immunohistochemical staining. Human umbilical vein endothelial cells (HUVECs) were used to induce endothelial injury model by adding FSH, and the levels of NF-κB, Akt, eNOS, and FSHR were tested in HUVECs.</p><p><strong>Results: </strong>FSH treatment exacerbated atherosclerotic lesions in ApoE-/- mice. Moreover, FSH could promote the expression of VCAM-1 protein in HUVECs, and this effect was possibly mediated by the activation of NF-κB, while NF-κB activation was further enhanced by the activation of the PI3K/Akt/eNOS pathway. FSH failed to activate Akt and NF-κB in the presence of the PI3K inhibitor LY294002 in HUVECs.</p><p><strong>Conclusion: </strong>FSH promoted the development of atherosclerosis by increasing VCAM-1 protein expression via activating PI3K/Akt/NF-κB pathway.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"358-368"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000527239","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 1

Abstract

Objective: Follicle-stimulating hormone (FSH) level changes may be another reason for increasing the risk of cardiovascular disease. In this study, we aimed to investigate the role of FSH in atherosclerosis and its underlying mechanism.

Methods: ApoE-/- mice were divided into 4 groups, namely, the sham group, bilaterally orchidectomized group, FSH group, and testosterone-only group. Blood lipid and hormone levels were tested, aorta Oil Red O staining; the levels of NF-κB, Akt, eNOS, and FSH receptors in the aorta were measured by Western blotting. Expression of VCAM-1 was detected via Western blotting and immunohistochemical staining. Human umbilical vein endothelial cells (HUVECs) were used to induce endothelial injury model by adding FSH, and the levels of NF-κB, Akt, eNOS, and FSHR were tested in HUVECs.

Results: FSH treatment exacerbated atherosclerotic lesions in ApoE-/- mice. Moreover, FSH could promote the expression of VCAM-1 protein in HUVECs, and this effect was possibly mediated by the activation of NF-κB, while NF-κB activation was further enhanced by the activation of the PI3K/Akt/eNOS pathway. FSH failed to activate Akt and NF-κB in the presence of the PI3K inhibitor LY294002 in HUVECs.

Conclusion: FSH promoted the development of atherosclerosis by increasing VCAM-1 protein expression via activating PI3K/Akt/NF-κB pathway.

促卵泡激素通过激活PI3K/Akt/NF-κB通路加速雄激素剥夺小鼠动脉粥样硬化
目的:促卵泡激素(FSH)水平的变化可能是心血管疾病风险增加的另一个原因。在本研究中,我们旨在探讨促卵泡刺激素在动脉粥样硬化中的作用及其潜在机制。方法:将ApoE-/-小鼠分为4组,分别为假手术组、双侧去兰组、FSH组、单睾酮组。检测血脂、激素水平,主动脉油红O染色;Western blotting检测大鼠主动脉NF-κB、Akt、eNOS、FSH受体水平。Western blotting和免疫组化染色检测VCAM-1的表达。采用人脐静脉内皮细胞(HUVECs)添加FSH诱导内皮损伤模型,检测HUVECs中NF-κB、Akt、eNOS和FSHR的表达水平。结果:FSH治疗加重了ApoE-/-小鼠的动脉粥样硬化病变。此外,FSH可促进huvec中VCAM-1蛋白的表达,这种作用可能是通过活化NF-κB介导的,而活化PI3K/Akt/eNOS通路可进一步增强NF-κB的活化。在PI3K抑制剂LY294002存在的HUVECs中,FSH不能激活Akt和NF-κB。结论:FSH通过激活PI3K/Akt/NF-κB通路,提高VCAM-1蛋白表达,促进动脉粥样硬化的发生发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vascular Research
Journal of Vascular Research 医学-生理学
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信