The increase in c-fos expression in epileptic seizures is inhibited by magnetic field application, but not KCa1.1 channel expression.

IF 1.6 4区 生物学 Q3 BIOLOGY
Mehmet Zülkif Akdağ, Emrah Oğraş, Züleyha Doğanyiğit, Enes Akyüz, Mahmut Berat Akdag, Aslı Okan, Veysi Akpolat, I Rem Küllü
{"title":"The increase in c-fos expression in epileptic seizures is inhibited by magnetic field application, but not K<sub>Ca</sub>1.1 channel expression.","authors":"Mehmet Zülkif Akdağ,&nbsp;Emrah Oğraş,&nbsp;Züleyha Doğanyiğit,&nbsp;Enes Akyüz,&nbsp;Mahmut Berat Akdag,&nbsp;Aslı Okan,&nbsp;Veysi Akpolat,&nbsp;I Rem Küllü","doi":"10.1080/15368378.2023.2247027","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to understand the expression of big potassium (BK, K<sub>Ca</sub>1.1) channels in epileptic seizures under magnetic field application. Forty Wistar albino adult male rats were divided into five groups (<i>n</i> = 8). First group rats were control group. Pentylenetetrazole (PTZ) administrated to second group rats to induce the seizures with 35 mg/kg intraperitoneally injection every two days. Levetiracetam (LEV) i.p. at a dose of 108 mg/kg was given to third group rats as positive control group (PC) before 20 minutes PTZ administration. Pulsed magnetic field with 1.5 mT was exposed to the fourth group rats for 3 hours a day for 1 month as magnetic field (MF) group. 1.5 mT pulsed magnetic field was exposed to the fifth group rats for 3 hours a day for 1 month in addition to PTZ administration (PTZ+MF). K<sub>Ca</sub>1.1 not changed in hippocampus of PTZ rats while increased in frontal cortex and pons for PTZ group but not changed with magnetic field exposure. K<sub>Ca</sub>1.1 increased in heart of PTZ animals and turned back to mean control values with magnetic field exposure. Suppressing the expected increase of c-fos protein expression in seizures with magnetic field application but not being able to change the K<sub>Ca</sub>1.1 expression shows that new studies can be done by increasing the frequency of 1.5 mT magnetic field.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"42 2","pages":"81-97"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2247027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to understand the expression of big potassium (BK, KCa1.1) channels in epileptic seizures under magnetic field application. Forty Wistar albino adult male rats were divided into five groups (n = 8). First group rats were control group. Pentylenetetrazole (PTZ) administrated to second group rats to induce the seizures with 35 mg/kg intraperitoneally injection every two days. Levetiracetam (LEV) i.p. at a dose of 108 mg/kg was given to third group rats as positive control group (PC) before 20 minutes PTZ administration. Pulsed magnetic field with 1.5 mT was exposed to the fourth group rats for 3 hours a day for 1 month as magnetic field (MF) group. 1.5 mT pulsed magnetic field was exposed to the fifth group rats for 3 hours a day for 1 month in addition to PTZ administration (PTZ+MF). KCa1.1 not changed in hippocampus of PTZ rats while increased in frontal cortex and pons for PTZ group but not changed with magnetic field exposure. KCa1.1 increased in heart of PTZ animals and turned back to mean control values with magnetic field exposure. Suppressing the expected increase of c-fos protein expression in seizures with magnetic field application but not being able to change the KCa1.1 expression shows that new studies can be done by increasing the frequency of 1.5 mT magnetic field.

磁场作用可抑制癫痫发作时c-fos表达的增加,但不抑制KCa1.1通道的表达。
本研究旨在了解磁场作用下癫痫发作大钾(BK, KCa1.1)通道的表达情况。40只成年雄性Wistar白化大鼠分为5组(n = 8)。第一组大鼠为对照组。第二组大鼠腹腔注射戊四唑(PTZ) 35 mg/kg,每2 d致痫。第三组大鼠在给药前20分钟给予左乙拉西坦(LEV) 108 mg/kg,作为阳性对照组(PC)。以1.5 mT的脉冲磁场照射第四组大鼠,每天照射3小时,连续1个月作为磁场组。第五组大鼠在给予PTZ (PTZ+MF)的基础上,每天照射1.5 mT脉冲磁场3小时,持续1个月。PTZ组大鼠海马区KCa1.1无变化,额叶皮质区和脑桥区KCa1.1升高,但不随磁场暴露而变化。磁场暴露后,PTZ动物心脏KCa1.1升高,并恢复到平均对照值。磁场作用抑制癫痫发作中c-fos蛋白表达的预期增加,但不能改变KCa1.1表达,表明可以通过增加1.5 mT磁场频率进行新的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信