Auwal Abdullahi, Bishir Sabo, Umaru Muhammad Badaru, Wim Saeys, Steven Truijen
{"title":"Factors influencing recovery of upper limb motor function during constraint-induced movement therapy for people with stroke.","authors":"Auwal Abdullahi, Bishir Sabo, Umaru Muhammad Badaru, Wim Saeys, Steven Truijen","doi":"10.1515/tnsci-2022-0260","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study is to determine the personal and clinical factors that can predict recovery of motor function in people with stroke.</p><p><strong>Methods: </strong>Characteristics of the study participants such as age, sex, time since stroke and type of stroke, motor function, shoulder pain, amount and quality of use of the affected limb in the real world, wrist and elbow spasticity, handedness, central post-stroke pain and dose of massed practice were recorded. The data obtained were analyzed using descriptive statistics and multiple regression.</p><p><strong>Results: </strong>A total of 144 patients with stroke with mean age, 58.71 ± 19.90 years participated in the study. The result showed that, the whole model significantly explained the total variance by 88.4%, <i>F</i>(14, 144) = 32.870, <i>R</i> <sup>2</sup> = 0. 0.781, <i>p</i> < 0.001. However, in the final model, only four independent variables in the order of degree of predictability, amount of use of the limb in the real world (Beta = 0.455, <i>p</i> = 0.003), intensity of practice during rehabilitation session (Beta = 0.321, <i>p</i> < 0.001), wrist spasticity (Beta = 0.148, <i>p</i> = 0.004) and side affected (Beta = 0.093, <i>p</i> = 0.033) significantly predicted recovery of motor function.</p><p><strong>Conclusion: </strong>Encouraging the use of the limb in the real world may be more important than practice during rehabilitation session in the clinic or in the laboratory.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"13 1","pages":"453-459"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743202/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0260","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Objective: The aim of this study is to determine the personal and clinical factors that can predict recovery of motor function in people with stroke.
Methods: Characteristics of the study participants such as age, sex, time since stroke and type of stroke, motor function, shoulder pain, amount and quality of use of the affected limb in the real world, wrist and elbow spasticity, handedness, central post-stroke pain and dose of massed practice were recorded. The data obtained were analyzed using descriptive statistics and multiple regression.
Results: A total of 144 patients with stroke with mean age, 58.71 ± 19.90 years participated in the study. The result showed that, the whole model significantly explained the total variance by 88.4%, F(14, 144) = 32.870, R2 = 0. 0.781, p < 0.001. However, in the final model, only four independent variables in the order of degree of predictability, amount of use of the limb in the real world (Beta = 0.455, p = 0.003), intensity of practice during rehabilitation session (Beta = 0.321, p < 0.001), wrist spasticity (Beta = 0.148, p = 0.004) and side affected (Beta = 0.093, p = 0.033) significantly predicted recovery of motor function.
Conclusion: Encouraging the use of the limb in the real world may be more important than practice during rehabilitation session in the clinic or in the laboratory.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.