Mitochondrial disruption in isolated human monocytes: an underlying mechanism for cadmium-induced immunotoxicity.

IF 2.4 4区 医学 Q3 TOXICOLOGY
Ulfat M Omar, Ekramy M Elmorsy, Ayat B Al-Ghafari
{"title":"Mitochondrial disruption in isolated human monocytes: an underlying mechanism for cadmium-induced immunotoxicity.","authors":"Ulfat M Omar,&nbsp;Ekramy M Elmorsy,&nbsp;Ayat B Al-Ghafari","doi":"10.1080/1547691X.2022.2113840","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The <i>in vitro</i> study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl<sub>2</sub>]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl<sub>2</sub> on the cells was evaluated. Functionally, CdCl<sub>2</sub> treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl<sub>2</sub> also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl<sub>2</sub> treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl<sub>2</sub>-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl<sub>2</sub>-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl<sub>2</sub> upon the mitochondria within these cells.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"81-92"},"PeriodicalIF":2.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2022.2113840","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.

离体人单核细胞线粒体破坏:镉诱导免疫毒性的潜在机制。
镉(Cd)是一种经常在环境中发现的免疫毒性金属。这里进行的体外研究评估了Cd对分离的人外周血单核细胞(hPBM)的免疫毒性作用。不同剂量的镉(0、0.1、1、10和100µM,分别为二氯化镉[CdCl2])暴露3、6、12、24、48和72小时的研究结果表明,试验剂对细胞具有时间和浓度相关的细胞毒性。此后,仅使用那些在48小时内未造成极端细胞致死的剂量,评估0.1或1µM CdCl2对细胞的影响。在功能上,CdCl2治疗导致hPBM吞噬活性以及细胞形成/释放细胞因子(包括肿瘤坏死因子[TNF]-α和白细胞介素[IL]-6和-8)的时间和浓度相关的降低。CdCl2还导致ATP的产生(部分是通过抑制线粒体复合体I和III)以及线粒体膜电位(MMP)和耗氧量(OCR)显著降低;与细胞乳酸生成的平行增加有关)。此外,CdCl2处理导致线粒体膜流动性(MMF)和细胞不饱和脂肪酸含量显著增加。基于这里的结果,我们可以得出结论,在CdCl2诱导的分离hPBM功能障碍期间产生的一些影响(即吞噬活性的改变,细胞因子的形成/分泌)可能是继发于CdCl2诱导的hPBM细胞生物能量的破坏,这种影响本身就是CdCl2对这些细胞内线粒体的总体毒性的高潮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Immunotoxicology
Journal of Immunotoxicology 医学-毒理学
CiteScore
6.70
自引率
3.00%
发文量
26
审稿时长
1 months
期刊介绍: The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信