A standardized protocol for manually segmenting stroke lesions on high-resolution T1-weighted MR images.

Frontiers in neuroimaging Pub Date : 2023-01-10 eCollection Date: 2022-01-01 DOI:10.3389/fnimg.2022.1098604
Bethany P Lo, Miranda R Donnelly, Giuseppe Barisano, Sook-Lei Liew
{"title":"A standardized protocol for manually segmenting stroke lesions on high-resolution T1-weighted MR images.","authors":"Bethany P Lo, Miranda R Donnelly, Giuseppe Barisano, Sook-Lei Liew","doi":"10.3389/fnimg.2022.1098604","DOIUrl":null,"url":null,"abstract":"<p><p>Although automated methods for stroke lesion segmentation exist, many researchers still rely on manual segmentation as the gold standard. Our detailed, standardized protocol for stroke lesion tracing on high-resolution 3D T1-weighted (T1w) magnetic resonance imaging (MRI) has been used to trace over 1,300 stroke MRI. In the current study, we describe the protocol, including a step-by-step method utilized for training multiple individuals to trace lesions (\"tracers\") in a consistent manner and suggestions for distinguishing between lesioned and non-lesioned areas in stroke brains. Inter-rater and intra-rater reliability were calculated across six tracers trained using our protocol, resulting in an average intraclass correlation of 0.98 and 0.99, respectively, as well as a Dice similarity coefficient of 0.727 and 0.839, respectively. This protocol provides a standardized guideline for researchers performing manual lesion segmentation in stroke T1-weighted MRI, with detailed methods to promote reproducibility in stroke research.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"1 ","pages":"1098604"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2022.1098604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although automated methods for stroke lesion segmentation exist, many researchers still rely on manual segmentation as the gold standard. Our detailed, standardized protocol for stroke lesion tracing on high-resolution 3D T1-weighted (T1w) magnetic resonance imaging (MRI) has been used to trace over 1,300 stroke MRI. In the current study, we describe the protocol, including a step-by-step method utilized for training multiple individuals to trace lesions ("tracers") in a consistent manner and suggestions for distinguishing between lesioned and non-lesioned areas in stroke brains. Inter-rater and intra-rater reliability were calculated across six tracers trained using our protocol, resulting in an average intraclass correlation of 0.98 and 0.99, respectively, as well as a Dice similarity coefficient of 0.727 and 0.839, respectively. This protocol provides a standardized guideline for researchers performing manual lesion segmentation in stroke T1-weighted MRI, with detailed methods to promote reproducibility in stroke research.

Abstract Image

Abstract Image

Abstract Image

在高分辨率 T1 加权磁共振图像上手动分割脑卒中病灶的标准化方案。
尽管存在中风病灶自动分割方法,但许多研究人员仍将人工分割作为金标准。我们在高分辨率三维 T1 加权(T1w)磁共振成像(MRI)上对脑卒中病灶进行追踪的详细标准化方案已用于追踪 1300 多例脑卒中 MRI。在当前的研究中,我们描述了该方案,包括用于训练多人以一致的方式追踪病变("追踪者")的逐步方法,以及区分中风大脑病变和非病变区域的建议。对使用我们的方案训练的六名描记员进行了评分者之间和评分者内部可靠性的计算,得出的平均类内相关性分别为 0.98 和 0.99,Dice 相似性系数分别为 0.727 和 0.839。该方案为研究人员在脑卒中 T1 加权磁共振成像中进行手动病灶分割提供了标准化指南,并提供了促进脑卒中研究可重复性的详细方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信