{"title":"Silane coupling agent in biomedical materials.","authors":"Ze-Qun Zhang, Ke-Feng Ren, Jian Ji","doi":"10.1116/6.0002712","DOIUrl":null,"url":null,"abstract":"<p><p>Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.