Shanqing Jiang, Fang Xu, Menglong Jin, Zhen Wang, Xiaodong Xu, Ying Zhou, Jibo Wang, Longjun Gu, Han Fan, Yuhang Fan, Zhangxian Zhou, Changyong Li, Pu Chen
{"title":"Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids.","authors":"Shanqing Jiang, Fang Xu, Menglong Jin, Zhen Wang, Xiaodong Xu, Ying Zhou, Jibo Wang, Longjun Gu, Han Fan, Yuhang Fan, Zhangxian Zhou, Changyong Li, Pu Chen","doi":"10.1088/1758-5090/ac933c","DOIUrl":null,"url":null,"abstract":"<p><p>Liver organoids represent emerging human-relevant<i>in vitro</i>liver models that have a wide range of biomedical applications in basic medical studies and preclinical drug discovery. However, the generation of liver organoids currently relies on the conventional Matrigel dome method, which lacks precise microenvironmental control over organoid growth and results in significant heterogeneity of the formed liver organoids. Here, we demonstrate a novel high-throughput culture method to generate uniform liver organoids from human pluripotent stem cell-derived foregut stem cells in micropatterned agarose scaffold. By using this approach, more than 8000 uniformly-sized liver organoids containing liver parenchyma cells, non-parenchymal cells, and a unique stem cell niche could be efficiently and reproducibly generated in a 48-well plate with a size coefficient of variation significance smaller than that in the Matrigel dome. Additionally, the liver organoids highly expressed liver-specific markers, including albumin (ALB), hepatocyte nuclear factor 4 alpha (HNF4α), and alpha-fetoprotein (AFP), and displayed liver functions, such as lipid accumulation, glycogen synthesis, ALB secretion, and urea synthesis. As a proof of concept, we evaluated the acute hepatotoxicity of acetaminophen (APAP) in these organoids and observed APAP-induced liver fibrosis. Overall, we expect that the liver organoids will facilitate wide biomedical applications in hepatotoxicity analysis and liver disease modeling.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"15 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ac933c","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Liver organoids represent emerging human-relevantin vitroliver models that have a wide range of biomedical applications in basic medical studies and preclinical drug discovery. However, the generation of liver organoids currently relies on the conventional Matrigel dome method, which lacks precise microenvironmental control over organoid growth and results in significant heterogeneity of the formed liver organoids. Here, we demonstrate a novel high-throughput culture method to generate uniform liver organoids from human pluripotent stem cell-derived foregut stem cells in micropatterned agarose scaffold. By using this approach, more than 8000 uniformly-sized liver organoids containing liver parenchyma cells, non-parenchymal cells, and a unique stem cell niche could be efficiently and reproducibly generated in a 48-well plate with a size coefficient of variation significance smaller than that in the Matrigel dome. Additionally, the liver organoids highly expressed liver-specific markers, including albumin (ALB), hepatocyte nuclear factor 4 alpha (HNF4α), and alpha-fetoprotein (AFP), and displayed liver functions, such as lipid accumulation, glycogen synthesis, ALB secretion, and urea synthesis. As a proof of concept, we evaluated the acute hepatotoxicity of acetaminophen (APAP) in these organoids and observed APAP-induced liver fibrosis. Overall, we expect that the liver organoids will facilitate wide biomedical applications in hepatotoxicity analysis and liver disease modeling.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).