Hope J. Wolmarans, Vayda R. Barker, Andrea Chobrutskiy, Boris I. Chobrutskiy, Taha I. Huda, George Blanck
{"title":"Exploiting big data survival information to unify risk-stratification related, adaptive immune receptor parameters for multiple myeloma","authors":"Hope J. Wolmarans, Vayda R. Barker, Andrea Chobrutskiy, Boris I. Chobrutskiy, Taha I. Huda, George Blanck","doi":"10.1038/s41435-023-00212-z","DOIUrl":null,"url":null,"abstract":"With the improvement of treatment options, multiple myeloma related life expectancy has been prolonged, but the disease remains largely incurable. Immunotherapy is a growing field that shows promise in advancements for treatment, and recent work has demonstrated an opportunity to use immune receptor, complementarity determining region-3 (CDR3)-candidate antigen chemical complementarity scores to identify survival distinctions among subgroups of patients. Here, we have applied the complementarity scoring algorithm to identify multiple myeloma related, CDR3-cancer testis antigen (CTA) relationships associated with survival distinctions. Furthermore, we have overlapped these immune receptor features with a previous study that showed a dramatic survival distinction based on T-cell receptor, V- and J-gene segment usage, HLA allele combinations, whereby 100% of the patients in certain combination groups had no mortality related to multiple myeloma, during the study period. This overlap evaluation was consistent with the idea that there are likely considerable constraints on productive TRB-antigen-HLA combinations but more flexibility, and unpredictability, for the TRA-antigen-HLA combinations. Also, the approaches in this reported indicated the potential importance of the CTA, IGSF11, as a multiple myeloma antigen, an antigen previously, independently considered as a vaccine candidate in other settings.","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":"24 4","pages":"194-199"},"PeriodicalIF":5.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41435-023-00212-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
With the improvement of treatment options, multiple myeloma related life expectancy has been prolonged, but the disease remains largely incurable. Immunotherapy is a growing field that shows promise in advancements for treatment, and recent work has demonstrated an opportunity to use immune receptor, complementarity determining region-3 (CDR3)-candidate antigen chemical complementarity scores to identify survival distinctions among subgroups of patients. Here, we have applied the complementarity scoring algorithm to identify multiple myeloma related, CDR3-cancer testis antigen (CTA) relationships associated with survival distinctions. Furthermore, we have overlapped these immune receptor features with a previous study that showed a dramatic survival distinction based on T-cell receptor, V- and J-gene segment usage, HLA allele combinations, whereby 100% of the patients in certain combination groups had no mortality related to multiple myeloma, during the study period. This overlap evaluation was consistent with the idea that there are likely considerable constraints on productive TRB-antigen-HLA combinations but more flexibility, and unpredictability, for the TRA-antigen-HLA combinations. Also, the approaches in this reported indicated the potential importance of the CTA, IGSF11, as a multiple myeloma antigen, an antigen previously, independently considered as a vaccine candidate in other settings.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.