M Rifqi Aufan, Zachary T Jost, Neal J Miller, Oleg F Sharifov, Himanshu Gupta, Gilbert J Perry, J Michael Wells, Thomas S Denney, Steven G Lloyd
{"title":"Electrocardiogram to Determine Mitral and Aortic Valve Opening and Closure.","authors":"M Rifqi Aufan, Zachary T Jost, Neal J Miller, Oleg F Sharifov, Himanshu Gupta, Gilbert J Perry, J Michael Wells, Thomas S Denney, Steven G Lloyd","doi":"10.1007/s13239-023-00664-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Knowledge of the timing of cardiac valve opening and closing is important in cardiac physiology. The relationship between valve motion and electrocardiogram (ECG) is often assumed, however is not clearly defined. Here we investigate the accuracy of cardiac valve timing estimated using only the ECG, compared to Doppler echocardiography (DE) flow imaging as the gold standard.</p><p><strong>Methods: </strong>DE was obtained in 37 patients with simultaneous ECG recording. ECG was digitally processed and identifiable features (QRS, T, P waves) were examined as potential reference points to determine opening and closure of aortic and mitral valves, as compared to DE outflow and inflow measurement. Timing offset of the cardiac valves opening and closure between ECG features and DE was measured from derivation set (n = 19). The obtained mean offset in combination with the ECG features model was then evaluated on a validation set (n = 18). Using the same approach, additional measurement was also done for the right sided valves.</p><p><strong>Results: </strong>From the derivation set, we found a fixed offset of 22 ± 9 ms, 2 ± 13 ms, 90 ± 26 ms, and - 2 ± - 27 ms when comparing S to aortic valve opening, T<sub>end</sub> to aortic valve closure, T<sub>end</sub> to mitral valve opening, and R to mitral valve closure respectively. Application of this model to the validation set showed good estimation of aortic and mitral valve opening and closure timing value, with low model absolute error (median of the mean absolute error of the four events = 19 ms compared to the gold standard DE measurement). For the right-sided (tricuspid and pulmonic) valves in our patient set, there was considerably higher median of the mean absolute error of 42 ms for the model.</p><p><strong>Conclusion: </strong>ECG features can be used to estimate aortic and mitral valve timings with good accuracy as compared to DE, allowing useful hemodynamic information to be derived from this easily available test.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00664-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Knowledge of the timing of cardiac valve opening and closing is important in cardiac physiology. The relationship between valve motion and electrocardiogram (ECG) is often assumed, however is not clearly defined. Here we investigate the accuracy of cardiac valve timing estimated using only the ECG, compared to Doppler echocardiography (DE) flow imaging as the gold standard.
Methods: DE was obtained in 37 patients with simultaneous ECG recording. ECG was digitally processed and identifiable features (QRS, T, P waves) were examined as potential reference points to determine opening and closure of aortic and mitral valves, as compared to DE outflow and inflow measurement. Timing offset of the cardiac valves opening and closure between ECG features and DE was measured from derivation set (n = 19). The obtained mean offset in combination with the ECG features model was then evaluated on a validation set (n = 18). Using the same approach, additional measurement was also done for the right sided valves.
Results: From the derivation set, we found a fixed offset of 22 ± 9 ms, 2 ± 13 ms, 90 ± 26 ms, and - 2 ± - 27 ms when comparing S to aortic valve opening, Tend to aortic valve closure, Tend to mitral valve opening, and R to mitral valve closure respectively. Application of this model to the validation set showed good estimation of aortic and mitral valve opening and closure timing value, with low model absolute error (median of the mean absolute error of the four events = 19 ms compared to the gold standard DE measurement). For the right-sided (tricuspid and pulmonic) valves in our patient set, there was considerably higher median of the mean absolute error of 42 ms for the model.
Conclusion: ECG features can be used to estimate aortic and mitral valve timings with good accuracy as compared to DE, allowing useful hemodynamic information to be derived from this easily available test.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.