{"title":"The Influences of Cryopreservation Methods on RNA, Protein, Microstructure and Cell Viability of Skeletal Muscle Tissue.","authors":"Xiang Huang, Jingjing Jiang, Junmin Shen, Ziying Xu, Fangyan Gu, Jinlian Pei, Licheng Zhang, Peifu Tang, Pengbin Yin","doi":"10.1089/bio.2023.0005","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Different experiments require different sample storage methods. The commonly used preservation methods in biobank practice cannot fully meet the multifarious requirements of experimental techniques. Programmable controlled slow freezing (PCSF) can maintain the viability of tissue. In this study, we hypothesized that PCSF-preserved samples have potential advantages in matching subsequent experiments compared with existing methods. <b><i>Methods:</i></b> We compared the differences on skeletal muscle tissue RNA integrity, protein integrity, microstructure integrity, and cell viability between four existing cryopreservation methods: liquid nitrogen (LN<sub>2</sub>) snap-freezing, LN<sub>2</sub>-cooled isopentane snap-freezing, RNAlater<sup>®</sup>-based freezing, and PCSF. RNA integrity was evaluated using agarose gel electrophoresis and RNA integrity number. Freezing-related microstructural damage in the muscle tissue was evaluated using ice crystal diameter and muscle fiber cross-sectional area. Protein integrity was evaluated using immunofluorescence staining. Cell viability was evaluated using trypan blue staining after primary muscle cell isolation. <b><i>Results:</i></b> PCSF preserved RNA integrity better than LN<sub>2</sub> and isopentane, with a statistically significant difference. RNAlater preserved RNA integrity best. PCSF best controlled ice crystal size in myofibers, with a significant difference compared with LN<sub>2</sub>. The PCSF method best preserved the integrity of protein epitopes according to the mean fluorescence intensity results, with a significant difference. Cell viability was best preserved in the PCSF method compared with the other three methods, with a significant difference. <b><i>Conclusion:</i></b> PCSF protected the RNA integrity, microstructural integrity, protein integrity, and cell viability of skeletal muscle tissue. The application of PCSF in biobank practice is recommended as a multi-experiment-compatible cryopreservation method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Different experiments require different sample storage methods. The commonly used preservation methods in biobank practice cannot fully meet the multifarious requirements of experimental techniques. Programmable controlled slow freezing (PCSF) can maintain the viability of tissue. In this study, we hypothesized that PCSF-preserved samples have potential advantages in matching subsequent experiments compared with existing methods. Methods: We compared the differences on skeletal muscle tissue RNA integrity, protein integrity, microstructure integrity, and cell viability between four existing cryopreservation methods: liquid nitrogen (LN2) snap-freezing, LN2-cooled isopentane snap-freezing, RNAlater®-based freezing, and PCSF. RNA integrity was evaluated using agarose gel electrophoresis and RNA integrity number. Freezing-related microstructural damage in the muscle tissue was evaluated using ice crystal diameter and muscle fiber cross-sectional area. Protein integrity was evaluated using immunofluorescence staining. Cell viability was evaluated using trypan blue staining after primary muscle cell isolation. Results: PCSF preserved RNA integrity better than LN2 and isopentane, with a statistically significant difference. RNAlater preserved RNA integrity best. PCSF best controlled ice crystal size in myofibers, with a significant difference compared with LN2. The PCSF method best preserved the integrity of protein epitopes according to the mean fluorescence intensity results, with a significant difference. Cell viability was best preserved in the PCSF method compared with the other three methods, with a significant difference. Conclusion: PCSF protected the RNA integrity, microstructural integrity, protein integrity, and cell viability of skeletal muscle tissue. The application of PCSF in biobank practice is recommended as a multi-experiment-compatible cryopreservation method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.