Universal characteristics of one-dimensional non-Hermitian superconductors.

IF 2.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Yang Li, Yang Cao, Yuanping Chen, Xiaosen Yang
{"title":"Universal characteristics of one-dimensional non-Hermitian superconductors.","authors":"Yang Li,&nbsp;Yang Cao,&nbsp;Yuanping Chen,&nbsp;Xiaosen Yang","doi":"10.1088/1361-648X/aca4b4","DOIUrl":null,"url":null,"abstract":"<p><p>We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone. The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect at Bloch points. If the non-Hermitian system has non-Hermitian skin effects, the non-Hermitian skin effect should be the<i>Z</i><sub>2</sub>skin effect: the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitian<i>p</i>- and<i>s</i>-wave topological superconductors. In terms of Majorana Pfaffian, a<i>Z</i><sub>2</sub>non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence for the non-Hermitian topological superconductors.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"35 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/aca4b4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

Abstract

We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone. The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect at Bloch points. If the non-Hermitian system has non-Hermitian skin effects, the non-Hermitian skin effect should be theZ2skin effect: the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitianp- ands-wave topological superconductors. In terms of Majorana Pfaffian, aZ2non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence for the non-Hermitian topological superconductors.

一维非厄米超导体的普遍特性。
我们建立了一维(1D)非厄米拓扑超导体的非布洛赫带理论。在此基础上揭示了非厄米拓扑超导体的普遍物理性质。根据粒子-空穴对称性,存在广义布里渊带的互反粒子环和空穴环。当粒子和空穴环在布洛赫点相交时,出现了量子相变的临界点,即能量间隙闭合的地方。如果非厄米系统具有非厄米集肤效应,则非厄米集肤效应应为z2集肤效应:相应的粒子和空穴的本征态分别定位于开链的两端。非布洛赫带理论应用于两个例子,非厄米和波拓扑超导体。根据Majorana Pfaffian定义了az2非bloch拓扑不变量,建立了非厄米拓扑超导体的非厄米体边界对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信