Deep learning system for classification of ploidy status using time-lapse videos

Elena Paya M.Sc. , Cristian Pulgarín M.Sc. , Lorena Bori M.Sc. , Adrián Colomer Ph.D. , Valery Naranjo Ph.D. , Marcos Meseguer Ph.D.
{"title":"Deep learning system for classification of ploidy status using time-lapse videos","authors":"Elena Paya M.Sc. ,&nbsp;Cristian Pulgarín M.Sc. ,&nbsp;Lorena Bori M.Sc. ,&nbsp;Adrián Colomer Ph.D. ,&nbsp;Valery Naranjo Ph.D. ,&nbsp;Marcos Meseguer Ph.D.","doi":"10.1016/j.xfss.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To develop a spatiotemporal model for de prediction of euploid and aneuploid<span> embryos using time-lapse videos from 10–115 hours after insemination (hpi).</span></p></div><div><h3>Design</h3><p>Retrospective study.</p></div><div><h3>Main Outcome Measures</h3><p>The research used an end-to-end approach to develop an automated artificial intelligence system capable of extracting features from images and classifying them, considering spatiotemporal dependencies. A convolutional neural network extracted the most relevant features from each video frame. A bidirectional long short-term memory layer received this information and analyzed the temporal dependencies, obtaining a low-dimensional feature vector that characterized each video. A multilayer perceptron classified them into 2 groups, euploid and noneuploid.</p></div><div><h3>Results</h3><p>The model performance in accuracy fell between 0.6170 and 0.7308. A multi-input model with a gate recurrent unit module performed better than others; the precision (or positive predictive value) is 0.8205 for predicting euploidy. Sensitivity, specificity, F1-Score and accuracy are 0.6957, 0.7813, 0.7042, and 0.7308, respectively.</p></div><div><h3>Conclusions</h3><p>This article proposes an artificial intelligence solution for prioritizing euploid embryo transfer. We can highlight the identification of a noninvasive method for chromosomal status diagnosis using a deep learning approach that analyzes raw data provided by time-lapse incubators. This method demonstrated potential automation of the evaluation process, allowing spatial and temporal information to encode.</p></div>","PeriodicalId":73012,"journal":{"name":"F&S science","volume":"4 3","pages":"Pages 211-218"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"F&S science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666335X23000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To develop a spatiotemporal model for de prediction of euploid and aneuploid embryos using time-lapse videos from 10–115 hours after insemination (hpi).

Design

Retrospective study.

Main Outcome Measures

The research used an end-to-end approach to develop an automated artificial intelligence system capable of extracting features from images and classifying them, considering spatiotemporal dependencies. A convolutional neural network extracted the most relevant features from each video frame. A bidirectional long short-term memory layer received this information and analyzed the temporal dependencies, obtaining a low-dimensional feature vector that characterized each video. A multilayer perceptron classified them into 2 groups, euploid and noneuploid.

Results

The model performance in accuracy fell between 0.6170 and 0.7308. A multi-input model with a gate recurrent unit module performed better than others; the precision (or positive predictive value) is 0.8205 for predicting euploidy. Sensitivity, specificity, F1-Score and accuracy are 0.6957, 0.7813, 0.7042, and 0.7308, respectively.

Conclusions

This article proposes an artificial intelligence solution for prioritizing euploid embryo transfer. We can highlight the identification of a noninvasive method for chromosomal status diagnosis using a deep learning approach that analyzes raw data provided by time-lapse incubators. This method demonstrated potential automation of the evaluation process, allowing spatial and temporal information to encode.

使用延时视频对倍性状态进行分类的深度学习系统
目的利用人工授精(hpi)后10-115小时的延时视频,建立一个预测整倍体和非整倍体胚胎的时空模型。设计回顾性研究。主要结果测量该研究使用端到端的方法开发了一个自动人工智能系统,该系统能够从图像中提取特征并对其进行分类,同时考虑时空依赖性。卷积神经网络从每个视频帧中提取最相关的特征。双向长短期记忆层接收到这些信息并分析时间相关性,获得表征每个视频的低维特征向量。多层感知器将它们分为整倍体和非整倍体两组。结果模型的精度在0.6170和0.7308之间。具有门递归单元模块的多输入模型的性能优于其他模型;预测整倍性的准确度(或阳性预测值)为0.8205。敏感性、特异性、F1评分和准确度分别为0.6957、0.7813、0.7042和0.7308。结论本文提出了一种人工智能的整倍体胚胎移植优先级解决方案。我们可以强调使用深度学习方法来识别染色体状态诊断的非侵入性方法,该方法分析延时培养箱提供的原始数据。这种方法展示了评估过程的潜在自动化,允许对空间和时间信息进行编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
F&S science
F&S science Endocrinology, Diabetes and Metabolism, Obstetrics, Gynecology and Women's Health, Urology
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信