{"title":"Research hotspots and trends for axon regeneration (2000-2021): a bibliometric study and systematic review.","authors":"Yuyu Chou, Homaira Nawabi, Jingze Li","doi":"10.1186/s41232-022-00244-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Axons play an essential role in the connection of the nervous system with the rest of the body. Axon lesions often lead to permanent impairment of motor and cognitive functions and the interaction with the outside world. Studies focusing on axon regeneration have become a research field with considerable interest. The purpose of this study is to obtain an overall perspective of the research field of axonal regeneration and to assist the researchers and the funding agencies to better know the areas of greatest research opportunities.</p><p><strong>Methods: </strong>We conducted a bibliometric analysis and Latent Dirichlet Allocation (LDA) analysis of the global literature on axon regeneration based on the Web of Science (WoS) over the recent 22 years, to address the research hotspots, publication trends, and understudied areas.</p><p><strong>Results: </strong>A total of 21,018 articles were included, which in the recent two decades has increased by 125%. Among the top 12 hotspots, the annual productions rapidly increased in some topics, including axonal regeneration signaling pathway, axon guidance cues, neural circuits and functional recovery, nerve conduits, and cells transplant. Comparatively, the number of studies on axon regeneration inhibitors decreased. As for the topics focusing on nerve graft and transplantation, the annual number of papers tended to be relatively stable. Nevertheless, the underlying mechanisms of axon regrowth have not been completely uncovered. A lack of notable research on the epigenetic programs and noncoding RNAs regulation was observed. The significance of cell-type-specific data has been highlighted but with limited research working on that. Functional recovery from neuropathies also needs further studies.</p><p><strong>Conclusion: </strong>The last two decades witnessed tremendous progress in the field of axon regeneration. There are still a lot of challenges to be tackled in translating these technologies into clinical practice.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"42 1","pages":"60"},"PeriodicalIF":5.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727899/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-022-00244-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Axons play an essential role in the connection of the nervous system with the rest of the body. Axon lesions often lead to permanent impairment of motor and cognitive functions and the interaction with the outside world. Studies focusing on axon regeneration have become a research field with considerable interest. The purpose of this study is to obtain an overall perspective of the research field of axonal regeneration and to assist the researchers and the funding agencies to better know the areas of greatest research opportunities.
Methods: We conducted a bibliometric analysis and Latent Dirichlet Allocation (LDA) analysis of the global literature on axon regeneration based on the Web of Science (WoS) over the recent 22 years, to address the research hotspots, publication trends, and understudied areas.
Results: A total of 21,018 articles were included, which in the recent two decades has increased by 125%. Among the top 12 hotspots, the annual productions rapidly increased in some topics, including axonal regeneration signaling pathway, axon guidance cues, neural circuits and functional recovery, nerve conduits, and cells transplant. Comparatively, the number of studies on axon regeneration inhibitors decreased. As for the topics focusing on nerve graft and transplantation, the annual number of papers tended to be relatively stable. Nevertheless, the underlying mechanisms of axon regrowth have not been completely uncovered. A lack of notable research on the epigenetic programs and noncoding RNAs regulation was observed. The significance of cell-type-specific data has been highlighted but with limited research working on that. Functional recovery from neuropathies also needs further studies.
Conclusion: The last two decades witnessed tremendous progress in the field of axon regeneration. There are still a lot of challenges to be tackled in translating these technologies into clinical practice.
期刊介绍:
Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses.
Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.