Tanja Linnavalli, Outi Lahti, Minna Törmänen, Mari Tervaniemi, Benjamin Ultan Cowley
{"title":"Children's inhibition skills are associated with their P3a latency-results from an exploratory study.","authors":"Tanja Linnavalli, Outi Lahti, Minna Törmänen, Mari Tervaniemi, Benjamin Ultan Cowley","doi":"10.1186/s12993-022-00202-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The P3a response is thought to reflect involuntary orienting to an unexpected stimulus and has been connected with set-shifting and inhibition in some studies. In our exploratory study, we investigated if the amplitude and the latency of the P3a response were associated with the performance in a modified flanker task measuring inhibition and set-shifting in 10-year-old children (N = 42). Children participated in electroencephalography (EEG) measurement with an auditory multifeature paradigm including standard, deviating, and novel sounds. In addition, they performed a separate flanker task requiring inhibition and set-shifting skills.</p><p><strong>Results: </strong>The P3a latencies for deviant sounds were associated with the reaction time reflecting inhibition: the shorter the response latencies were, the faster the reaction time was. The P3a latencies for novel sounds were not linked to the reaction times reflecting either inhibition or set-shifting. In addition, the magnitude of the P3a response was not associated with the performance in the flanker task.</p><p><strong>Conclusions: </strong>Our results suggest that P3a response latency and reaction speed reflecting inhibitory skills are based on shared neural mechanism. Thus, the present study brings new insight to the field investigating the associations between behavior and its neural indices.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"18 1","pages":"13"},"PeriodicalIF":4.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-022-00202-7","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The P3a response is thought to reflect involuntary orienting to an unexpected stimulus and has been connected with set-shifting and inhibition in some studies. In our exploratory study, we investigated if the amplitude and the latency of the P3a response were associated with the performance in a modified flanker task measuring inhibition and set-shifting in 10-year-old children (N = 42). Children participated in electroencephalography (EEG) measurement with an auditory multifeature paradigm including standard, deviating, and novel sounds. In addition, they performed a separate flanker task requiring inhibition and set-shifting skills.
Results: The P3a latencies for deviant sounds were associated with the reaction time reflecting inhibition: the shorter the response latencies were, the faster the reaction time was. The P3a latencies for novel sounds were not linked to the reaction times reflecting either inhibition or set-shifting. In addition, the magnitude of the P3a response was not associated with the performance in the flanker task.
Conclusions: Our results suggest that P3a response latency and reaction speed reflecting inhibitory skills are based on shared neural mechanism. Thus, the present study brings new insight to the field investigating the associations between behavior and its neural indices.
期刊介绍:
A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.