Iron and the Pathophysiology of Diabetes.

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Annual review of physiology Pub Date : 2023-02-10 Epub Date: 2022-09-22 DOI:10.1146/annurev-physiol-022522-102832
Alexandria V Harrison, Felipe Ramos Lorenzo, Donald A McClain
{"title":"Iron and the Pathophysiology of Diabetes.","authors":"Alexandria V Harrison, Felipe Ramos Lorenzo, Donald A McClain","doi":"10.1146/annurev-physiol-022522-102832","DOIUrl":null,"url":null,"abstract":"<p><p>High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022522-102832","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.

Abstract Image

Abstract Image

铁与糖尿病的病理生理学。
高铁是 2 型糖尿病(T2DM)的危险因素,并影响其大多数主要特征:胰岛素分泌减少、胰岛素抵抗和肝糖生成增加。无论是在组织铁水平的正常范围内,还是在病理性铁超载的情况下,都是如此。由于铁在代谢过程(如燃料氧化)和代谢调节(如缺氧感应)中的核心作用,铁水平参与决定代谢率、糖代谢、燃料选择、胰岛素作用和脂肪细胞表型。与铁有关的糖尿病风险在决定糖尿病表型的大多数或所有组织中都很明显,其中脂肪细胞、β 细胞和肝脏起着核心作用。这些影响的分子机制多种多样,但可能有综合途径在起作用。阐明这些途径不仅对糖尿病的预防和治疗有意义,而且对其他疾病的发病机制也有意义,这些疾病与 T2DM 一样,都与衰老、营养和铁有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信