Daniela Angelova-Toshkina, Benjamin Weide, Lutz F Tietze, Michelle Hebst, Julia K Tietze
{"title":"Correlation of Baseline Tumor Burden with Clinical Outcome in Melanoma Patients Treated with Ipilimumab.","authors":"Daniela Angelova-Toshkina, Benjamin Weide, Lutz F Tietze, Michelle Hebst, Julia K Tietze","doi":"10.1159/000533504","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tumor burden is a frequently mentioned parameter; however, a commonly accepted definition is still lacking.</p><p><strong>Methods: </strong>In this double-center prospective and retrospective study, 76 patients with unresectable stage III or stage IV melanoma treated with ipilimumab were included. We defined the baseline tumor burden (BTB) as the global sum of all metastases' longest diameters before treatment started and correlated the calculated BTB with disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and with the baseline levels of LDH, S100B, and sULPB2.</p><p><strong>Results: </strong>BTB correlated significantly with DCR (p = 0.009), PFS (p = 0.002), OS (p = 0.032), and the occurrence of NRAS mutation (p = 0.006). BTB was also correlated to baseline serum levels of LDH (p = 0.011), S100B (p = 0.027), and SULBP (p < 0.0001). Multivariate analysis revealed that BPB and LDH were independently correlated with PFS and OS. With increasing BTB, disease control was less likely; no patient with a BTB >200 mm achieved disease control. For patients with brain metastasis, no correlation of BTB with DCR (p = 0.251), PFS (p = 0.059), or OS (p = 0.981) was observed.</p><p><strong>Conclusion: </strong>Calculated BTB is an independent prognostic factor for patients with metastatic melanoma treated with ipilimumab. Using calculated BTB as a definition of tumor burden may help increase comparability of outcome of therapies in future studies.</p>","PeriodicalId":19497,"journal":{"name":"Oncology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533504","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Tumor burden is a frequently mentioned parameter; however, a commonly accepted definition is still lacking.
Methods: In this double-center prospective and retrospective study, 76 patients with unresectable stage III or stage IV melanoma treated with ipilimumab were included. We defined the baseline tumor burden (BTB) as the global sum of all metastases' longest diameters before treatment started and correlated the calculated BTB with disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and with the baseline levels of LDH, S100B, and sULPB2.
Results: BTB correlated significantly with DCR (p = 0.009), PFS (p = 0.002), OS (p = 0.032), and the occurrence of NRAS mutation (p = 0.006). BTB was also correlated to baseline serum levels of LDH (p = 0.011), S100B (p = 0.027), and SULBP (p < 0.0001). Multivariate analysis revealed that BPB and LDH were independently correlated with PFS and OS. With increasing BTB, disease control was less likely; no patient with a BTB >200 mm achieved disease control. For patients with brain metastasis, no correlation of BTB with DCR (p = 0.251), PFS (p = 0.059), or OS (p = 0.981) was observed.
Conclusion: Calculated BTB is an independent prognostic factor for patients with metastatic melanoma treated with ipilimumab. Using calculated BTB as a definition of tumor burden may help increase comparability of outcome of therapies in future studies.
期刊介绍:
Although laboratory and clinical cancer research need to be closely linked, observations at the basic level often remain removed from medical applications. This journal works to accelerate the translation of experimental results into the clinic, and back again into the laboratory for further investigation. The fundamental purpose of this effort is to advance clinically-relevant knowledge of cancer, and improve the outcome of prevention, diagnosis and treatment of malignant disease. The journal publishes significant clinical studies from cancer programs around the world, along with important translational laboratory findings, mini-reviews (invited and submitted) and in-depth discussions of evolving and controversial topics in the oncology arena. A unique feature of the journal is a new section which focuses on rapid peer-review and subsequent publication of short reports of phase 1 and phase 2 clinical cancer trials, with a goal of insuring that high-quality clinical cancer research quickly enters the public domain, regardless of the trial’s ultimate conclusions regarding efficacy or toxicity.