Chacchu Bhattarai , Phanindra P. Poudel , Arnab Ghosh , Sneha G. Kalthur
{"title":"Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems","authors":"Chacchu Bhattarai , Phanindra P. Poudel , Arnab Ghosh , Sneha G. Kalthur","doi":"10.1016/j.diff.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>SOX10</em></span><span><span> gene and SOX10 protein are responsible for the gliogenesis of </span>neuroglia<span> from the neural crest cells. Expression of </span></span><em>SOX10</em><span> gene encodes SOX10 protein which binds with DNA<span> at its minor groove via its HMG domain upon activation. SOX10 protein undergoes bending and changes its conformation after binding with DNA. Via its transactivation domain and HMG domain, it further activates several other transcription factors, these cause gliogenesis of the neural crest cells into neuroglia. In literature, it is stated that the </span></span><em>SOX10</em><span> gene helps in the formation of schwann cells<span>, oligodendrocytes, and enteric ganglia from neural crest cells. Altered expression of the </span></span><em>SOX10</em> gene results in agliogenesis, dysmyelination, and demyelination in the nervous system as well as intestinal aganglionosis. This review highlighted that there is a role of the <em>SOX10</em> gene and SOX10 protein in enteric gliogenesis from the neural crest cells.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"128 ","pages":"Pages 13-25"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000718","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
SOX10 gene and SOX10 protein are responsible for the gliogenesis of neuroglia from the neural crest cells. Expression of SOX10 gene encodes SOX10 protein which binds with DNA at its minor groove via its HMG domain upon activation. SOX10 protein undergoes bending and changes its conformation after binding with DNA. Via its transactivation domain and HMG domain, it further activates several other transcription factors, these cause gliogenesis of the neural crest cells into neuroglia. In literature, it is stated that the SOX10 gene helps in the formation of schwann cells, oligodendrocytes, and enteric ganglia from neural crest cells. Altered expression of the SOX10 gene results in agliogenesis, dysmyelination, and demyelination in the nervous system as well as intestinal aganglionosis. This review highlighted that there is a role of the SOX10 gene and SOX10 protein in enteric gliogenesis from the neural crest cells.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.