Angus Ritchie, Maurizio Pacilli, Ramesh M Nataraja
{"title":"Simulation-based education in urology - an update.","authors":"Angus Ritchie, Maurizio Pacilli, Ramesh M Nataraja","doi":"10.1177/17562872231189924","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 30 years surgical training, including urology training, has changed from the Halstedian apprenticeship-based model to a competency-based one. Simulation-based education (SBE) is an effective, competency-based method for acquiring both technical and non-technical surgical skills and has rapidly become an essential component of urological education. This article introduces the key learning theory underpinning surgical education and SBE, discussing the educational concepts of mastery learning, deliberate practice, feedback, fidelity and assessment. These concepts are fundamental aspects of urological education, thus requiring clinical educators to have a detailed understanding of their impact on learning to assist trainees to acquire surgical skills. The article will then address in detail the current and emerging simulation modalities used in urological education, with specific urological examples provided. These modalities are part-task trainers and 3D-printed models for open surgery, laparoscopic bench and virtual reality trainers, robotic surgery simulation, simulated patients and roleplay, scenario-based simulation, hybrid simulation, distributed simulation and digital simulation. This article will particularly focus on recent advancements in several emerging simulation modalities that are being applied in urology training such as operable 3D-printed models, robotic surgery simulation and online simulation. The implementation of simulation into training programmes and our recommendations for the future direction of urological simulation will also be discussed.</p>","PeriodicalId":23010,"journal":{"name":"Therapeutic Advances in Urology","volume":"15 ","pages":"17562872231189924"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562872231189924","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past 30 years surgical training, including urology training, has changed from the Halstedian apprenticeship-based model to a competency-based one. Simulation-based education (SBE) is an effective, competency-based method for acquiring both technical and non-technical surgical skills and has rapidly become an essential component of urological education. This article introduces the key learning theory underpinning surgical education and SBE, discussing the educational concepts of mastery learning, deliberate practice, feedback, fidelity and assessment. These concepts are fundamental aspects of urological education, thus requiring clinical educators to have a detailed understanding of their impact on learning to assist trainees to acquire surgical skills. The article will then address in detail the current and emerging simulation modalities used in urological education, with specific urological examples provided. These modalities are part-task trainers and 3D-printed models for open surgery, laparoscopic bench and virtual reality trainers, robotic surgery simulation, simulated patients and roleplay, scenario-based simulation, hybrid simulation, distributed simulation and digital simulation. This article will particularly focus on recent advancements in several emerging simulation modalities that are being applied in urology training such as operable 3D-printed models, robotic surgery simulation and online simulation. The implementation of simulation into training programmes and our recommendations for the future direction of urological simulation will also be discussed.
期刊介绍:
Therapeutic Advances in Urology delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of urology.
The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in urology, providing a forum in print and online for publishing the highest quality articles in this area. The editors welcome articles of current interest across all areas of urology, including treatment of urological disorders, with a focus on emerging pharmacological therapies.