Profiling tyrosine kinase inhibitors as AD therapeutics in a mouse model of AD.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Hyun-Ju Lee, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Hyang-Sook Hoe
{"title":"Profiling tyrosine kinase inhibitors as AD therapeutics in a mouse model of AD.","authors":"Hyun-Ju Lee, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Hyang-Sook Hoe","doi":"10.1186/s13041-023-01051-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ deposition, tauopathy, neuroinflammation, and impaired cognition. The recent identification of associations between protein kinases and AD pathology has spurred interest in tyrosine kinase inhibitors (TKIs) as potential strategic therapeutic agents for AD. In the present study, we investigated whether the TKIs ibrutinib, PD180970, and cabozantinib, which have different on-targets, selectively regulate AD pathology in 3.5- to 4-month-old 5xFAD mice (a model of the early phase of AD). Ibrutinib (10 mg/kg, i.p.) effectively reduced amyloid-β (Aβ) plaque number, tau hyperphosphorylation and neuroinflammation in 5xFAD mice. Surprisingly, PD180970 (10 mg/kg, i.p.) did not alter Aβ plaque number or neuroinflammatory responses and exacerbated tau hyperphosphorylation in 5xFAD mice. Cabozantinib (10 mg/kg, i.p.) had no effect on amyloidopathy but partially relieved tau hyperphosphorylation and astrogliosis. Taken together, our results suggest that not all TKIs have therapeutic effects on AD pathology in a mouse model of AD. Consequently, optimization of drug dosage, injection periods and administration routes should be considered when repurposing TKIs as novel AD therapeutics.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-023-01051-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ deposition, tauopathy, neuroinflammation, and impaired cognition. The recent identification of associations between protein kinases and AD pathology has spurred interest in tyrosine kinase inhibitors (TKIs) as potential strategic therapeutic agents for AD. In the present study, we investigated whether the TKIs ibrutinib, PD180970, and cabozantinib, which have different on-targets, selectively regulate AD pathology in 3.5- to 4-month-old 5xFAD mice (a model of the early phase of AD). Ibrutinib (10 mg/kg, i.p.) effectively reduced amyloid-β (Aβ) plaque number, tau hyperphosphorylation and neuroinflammation in 5xFAD mice. Surprisingly, PD180970 (10 mg/kg, i.p.) did not alter Aβ plaque number or neuroinflammatory responses and exacerbated tau hyperphosphorylation in 5xFAD mice. Cabozantinib (10 mg/kg, i.p.) had no effect on amyloidopathy but partially relieved tau hyperphosphorylation and astrogliosis. Taken together, our results suggest that not all TKIs have therapeutic effects on AD pathology in a mouse model of AD. Consequently, optimization of drug dosage, injection periods and administration routes should be considered when repurposing TKIs as novel AD therapeutics.

Abstract Image

在AD小鼠模型中分析酪氨酸激酶抑制剂作为AD治疗剂。
阿尔茨海默病(AD)是一种以aβ沉积、tau病、神经炎症和认知障碍为特征的神经退行性疾病。最近发现的蛋白激酶与AD病理学之间的相关性激发了人们对酪氨酸激酶抑制剂(TKIs)作为AD潜在战略治疗剂的兴趣。在本研究中,我们研究了具有不同靶点的TKIs-伊布替尼、PD180970和卡博扎替尼,选择性调节3.5至4个月大的5xFAD小鼠(AD早期模型)的AD病理。伊布替尼(10 mg/kg,腹腔注射)有效降低了5xFAD小鼠的淀粉样蛋白-β(Aβ)斑块数量、tau过度磷酸化和神经炎症。令人惊讶的是,PD180970(10 mg/kg,i.p.)没有改变5xFAD小鼠的Aβ斑块数量或神经炎症反应,并加剧了tau过度磷酸化。卡博扎替尼(10 mg/kg,腹腔注射)对淀粉样变性没有影响,但部分缓解了tau过度磷酸化和星形胶质细胞增生。总之,我们的研究结果表明,在AD小鼠模型中,并非所有TKIs都对AD病理有治疗作用。因此,在将TKIs重新用作新型AD治疗剂时,应考虑优化药物剂量、注射周期和给药途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信