Ala Abdulsalam Alarood, Muhammad Faheem, Mahmoud Ahmad Al-Khasawneh, Abdullah I. A. Alzahrani, Abdulrahman A. Alshdadi
{"title":"Secure medical image transmission using deep neural network in e-health applications","authors":"Ala Abdulsalam Alarood, Muhammad Faheem, Mahmoud Ahmad Al-Khasawneh, Abdullah I. A. Alzahrani, Abdulrahman A. Alshdadi","doi":"10.1049/htl2.12049","DOIUrl":null,"url":null,"abstract":"<p>Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"10 4","pages":"87-98"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12049","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.