Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Deping Wang, Bowen Li, Shuchao Wang, Yingjian Hao, Hua Wang, Wei Sun, Jimin Cao, Xin Zhou, Bin Zheng
{"title":"Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria.","authors":"Deping Wang, Bowen Li, Shuchao Wang, Yingjian Hao, Hua Wang, Wei Sun, Jimin Cao, Xin Zhou, Bin Zheng","doi":"10.1038/s41536-023-00315-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co<sub>3</sub>O<sub>4</sub>, to treat ischemic cerebrovascular disease. Mn/Co<sub>3</sub>O<sub>4</sub> effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H<sup>+</sup> surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co<sub>3</sub>O<sub>4</sub> encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co<sub>3</sub>O<sub>4</sub> effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"8 1","pages":"44"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-023-00315-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co3O4, to treat ischemic cerebrovascular disease. Mn/Co3O4 effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H+ surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co3O4 encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co3O4 effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.

Abstract Image

Abstract Image

Abstract Image

诱导异常线粒体自噬的工程化吸入纳米催化治疗缺血性脑血管病。
线粒体功能障碍和随后活性氧(ROS)的积累是缺血性脑血管病病理的关键因素。因此,清除活性氧和受损线粒体对于有效治疗该疾病至关重要。为此,我们设计了一种吸入性纳米治疗剂P/D@Mn/Co3O4,用于治疗缺血性脑血管病。Mn/Co3O4能有效去除细胞中过量的ROS,降低细胞急性氧化应激,保护神经细胞免于凋亡。此外,它耗尽线粒体周围的H+,使线粒体膜电位去极化,诱导线粒体自噬,消除异常线粒体,从而通过消除ROS再生的来源,避免了ROS的持续过量产生。经鼻给药,经血小板膜和2,3-(二氧基丙基)-三甲基氯化铵包被的Mn/Co3O4可以绕过血脑屏障,通过三叉神经和嗅觉途径进入大脑,靶向炎症区域,清除病变区域的ROS和受损线粒体。在脑卒中和血管性痴呆大鼠模型中,P/D@Mn/Co3O4通过清除患处ROS和受损线粒体,有效抑制急慢性脑缺血症状。我们的研究结果表明,本研究开发的纳米治疗剂可用于缺血性脑血管病的有效治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信