Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study.
Ernesto Rodriguez-Ayala, Esther C Gallegos-Cabrales, Laura Gonzalez-Lopez, Hugo A Laviada-Molina, Rocio A Salinas-Osornio, Edna J Nava-Gonzalez, Irene Leal-Berumen, Claudia Escudero-Lourdes, Fabiola Escalante-Araiza, Fatima A Buenfil-Rello, Vanessa-Giselle Peschard, Antonio Laviada-Nagel, Eliud Silva, Rosa A Veloz-Garza, Angelica Martinez-Hernandez, Francisco M Barajas-Olmos, Fernanda Molina-Segui, Lucia Gonzalez-Ramirez, Rebeca Espadas-Olivera, Ricardo Lopez-Muñoz, Ruy D Arjona-Villicaña, Victor M Hernandez-Escalante, Martha E Rodriguez-Arellano, Janeth F Gaytan-Saucedo, Zoila Vaquera, Monica Acebo-Martinez, Judith Cornejo-Barrera, Jancy Andrea Huertas-Quintero, Juan Carlos Castillo-Pineda, Areli Murillo-Ramirez, Sara P Diaz-Tena, Benigno Figueroa-Nuñez, Melesio E Valencia-Rendon, Rafael Garzon-Zamora, Juan Manuel Viveros-Paredes, José Ángeles-Chimal, Jesús Santa-Olalla Tapia, José M Remes-Troche, Salvador B Valdovinos-Chavez, Eira E Huerta-Avila, Juan Carlos Lopez-Alvarenga, Anthony G Comuzzie, Karin Haack, Xianlin Han, Lorena Orozco, Susan Weintraub, Jack W Kent, Shelley A Cole, Raul A Bastarrachea
{"title":"Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study.","authors":"Ernesto Rodriguez-Ayala, Esther C Gallegos-Cabrales, Laura Gonzalez-Lopez, Hugo A Laviada-Molina, Rocio A Salinas-Osornio, Edna J Nava-Gonzalez, Irene Leal-Berumen, Claudia Escudero-Lourdes, Fabiola Escalante-Araiza, Fatima A Buenfil-Rello, Vanessa-Giselle Peschard, Antonio Laviada-Nagel, Eliud Silva, Rosa A Veloz-Garza, Angelica Martinez-Hernandez, Francisco M Barajas-Olmos, Fernanda Molina-Segui, Lucia Gonzalez-Ramirez, Rebeca Espadas-Olivera, Ricardo Lopez-Muñoz, Ruy D Arjona-Villicaña, Victor M Hernandez-Escalante, Martha E Rodriguez-Arellano, Janeth F Gaytan-Saucedo, Zoila Vaquera, Monica Acebo-Martinez, Judith Cornejo-Barrera, Jancy Andrea Huertas-Quintero, Juan Carlos Castillo-Pineda, Areli Murillo-Ramirez, Sara P Diaz-Tena, Benigno Figueroa-Nuñez, Melesio E Valencia-Rendon, Rafael Garzon-Zamora, Juan Manuel Viveros-Paredes, José Ángeles-Chimal, Jesús Santa-Olalla Tapia, José M Remes-Troche, Salvador B Valdovinos-Chavez, Eira E Huerta-Avila, Juan Carlos Lopez-Alvarenga, Anthony G Comuzzie, Karin Haack, Xianlin Han, Lorena Orozco, Susan Weintraub, Jack W Kent, Shelley A Cole, Raul A Bastarrachea","doi":"10.1080/21623945.2020.1743116","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"9 1","pages":"153-169"},"PeriodicalIF":3.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2020.1743116","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.