Lower Fatigue in the Eccentric than the Concentric Phase of a Bench Press Set Executed with Maximum Velocity to Failure Against Both Heavy and Light Loads.
{"title":"Lower Fatigue in the Eccentric than the Concentric Phase of a Bench Press Set Executed with Maximum Velocity to Failure Against Both Heavy and Light Loads.","authors":"Athanasios Tsoukos, Gregory C Bogdanis","doi":"10.5114/jhk/168792","DOIUrl":null,"url":null,"abstract":"<p><p>We examined changes in barbell velocity and surface electromyographic activity (sEMG) during the concentric (CON) and eccentric (ECC) phases of a bench press set. Ten men executed a set to instant exhaustion as fast as possible, against a low (40% 1-RM) and a heavy load (80% 1-RM), one week apart. The reduction in mean barbell velocity was lower in the ECC compared with the CON phase for both loads (40%1-RM: ECC: -36 ± 21% vs. CON: -63 ± 14%, p < 0.001; 80%1-RM: ECC: -26 ± 15% vs. CON: -59 ± 9%, p < 0.001). Under both loading conditions, sEMG activity of the pectoralis major increased in the last compared to the first repetitions only in the CON phase (by 48.6% and 24.8%, p < 0.01, in the 40% and 80%1-RM, respectively). Similarly, triceps brachii sEMG increased by 15.7% (p = 0.02) and by 21.0% (p < 0.001) during the CON phase in the 40% and 80%1-RM conditions, respectively. However, during the ECC phase, sEMG remained unchanged in the last part of the set for both muscles and loads except for 80%1-RM in the pectoralis major muscle. It was concluded that fatigue measured by velocity loss was lower during the ECC than the CON phase of the bench press movement, when the exercise was performed with maximum velocity to failure, irrespective of the load. sEMG was lower in the ECC than the CON phase for all loads, and increased at the end of the set only during the CON phase, while it remained relatively unchanged in the ECC phase, with the exception of the pectoralis muscle when the load was heavier.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"87 ","pages":"119-129"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/168792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We examined changes in barbell velocity and surface electromyographic activity (sEMG) during the concentric (CON) and eccentric (ECC) phases of a bench press set. Ten men executed a set to instant exhaustion as fast as possible, against a low (40% 1-RM) and a heavy load (80% 1-RM), one week apart. The reduction in mean barbell velocity was lower in the ECC compared with the CON phase for both loads (40%1-RM: ECC: -36 ± 21% vs. CON: -63 ± 14%, p < 0.001; 80%1-RM: ECC: -26 ± 15% vs. CON: -59 ± 9%, p < 0.001). Under both loading conditions, sEMG activity of the pectoralis major increased in the last compared to the first repetitions only in the CON phase (by 48.6% and 24.8%, p < 0.01, in the 40% and 80%1-RM, respectively). Similarly, triceps brachii sEMG increased by 15.7% (p = 0.02) and by 21.0% (p < 0.001) during the CON phase in the 40% and 80%1-RM conditions, respectively. However, during the ECC phase, sEMG remained unchanged in the last part of the set for both muscles and loads except for 80%1-RM in the pectoralis major muscle. It was concluded that fatigue measured by velocity loss was lower during the ECC than the CON phase of the bench press movement, when the exercise was performed with maximum velocity to failure, irrespective of the load. sEMG was lower in the ECC than the CON phase for all loads, and increased at the end of the set only during the CON phase, while it remained relatively unchanged in the ECC phase, with the exception of the pectoralis muscle when the load was heavier.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.