Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy.

Q3 Biochemistry, Genetics and Molecular Biology
Kiagus Aufa Ibrahim, Marlin Ramadhan Baidillah, Ridwan Wicaksono, Masahiro Takei
{"title":"Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy.","authors":"Kiagus Aufa Ibrahim,&nbsp;Marlin Ramadhan Baidillah,&nbsp;Ridwan Wicaksono,&nbsp;Masahiro Takei","doi":"10.2478/joeb-2023-0004","DOIUrl":null,"url":null,"abstract":"<p><p>Conductivity change in skin layers has been classified by source indicator <i>o<sup>k</sup></i> (<i>k</i>=1: Stratum corneum, <i>k</i>=2: Epidermis, <i>k</i>=3: Dermis, <i>k</i>=4: Fat, and <i>k</i>=5: Stratum corneum + Epidermis) trained from feedforward neural network (FNN) in bioelectrical impedance spectroscopy (BIS). In BIS studies, treating the skin as a bulk, limits the differentiation of conductivity changes in individual skin layers, however skin layer classification using FNN shows promise in accurately categorizing skin layers, which is essential for predicting source indicators <i>o<sup>k</sup></i> and initiating skin dielectric characteristics diagnosis. The <i>o<sup>k</sup></i> is trained by three main conceptual points which are (i) implementing FNN for predicting <i>k</i> in conductivity change, (ii) profiling four impedance inputs <i>α<sub>ξ</sub></i> consisting of magnitude input <i>α</i>|<sub><i>z</i></sub>|, phase angle input <i>α<sub>θ</sub></i>, resistance input <i>α<sub>R</sub></i>, and reactance input <i>α<sub>x</sub></i> for filtering nonessential input, and (iii) selecting low and high frequency pair <math><mrow><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mi>r</mi><mrow><mi>l</mi><mi>h</mi></mrow></msubsup></mrow><mo>)</mo></mrow></mrow></math> by distribution of relaxation time (DRT) for eliminating parasitic noise effect. The training data set of FNN is generated to obtain the <i>α<sub>ξ</sub></i> ∈ <i><b>R</b></i><sup>10×17×10</sup> by 10,200 cases by simulation under configuration and measurement parameters. The trained skin layer classification is validated through experiments with porcine skin under various sodium chloride (NaCl) solutions <i>C<sub>NaCl</sub></i> = {15, 20, 25, 30, 35}[mM] in the dermis layer. FNN successfully classified conductivity change in the dermis layer from experiment with accuracy of 90.6% for the bipolar set-up at <math><mrow><msubsup><mi>f</mi><mn>6</mn><mrow><mi>l</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mn>10</mn><mtext> </mtext><mo>&</mo><mn>100</mn><mtext> </mtext><mo>[</mo><mtext>kHz]</mtext></mrow></math> and with the same accuracy for the tetrapolar at <math><mrow><msubsup><mi>f</mi><mn>8</mn><mrow><mi>l</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mn>35</mn><mtext> </mtext><mo>&</mo><mn>100</mn><mtext> </mtext><mo>[</mo><mtext>kHz]</mtext></mrow></math>. The measurement noise and systematic error in the experimental results are minimized by the proposed method using the feature extraction based on <i>α<sub>ξ</sub></i> at <math><mrow><msubsup><mi>f</mi><mi>r</mi><mrow><mi>l</mi><mi>h</mi></mrow></msubsup></mrow></math>.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"14 1","pages":"19-31"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Conductivity change in skin layers has been classified by source indicator ok (k=1: Stratum corneum, k=2: Epidermis, k=3: Dermis, k=4: Fat, and k=5: Stratum corneum + Epidermis) trained from feedforward neural network (FNN) in bioelectrical impedance spectroscopy (BIS). In BIS studies, treating the skin as a bulk, limits the differentiation of conductivity changes in individual skin layers, however skin layer classification using FNN shows promise in accurately categorizing skin layers, which is essential for predicting source indicators ok and initiating skin dielectric characteristics diagnosis. The ok is trained by three main conceptual points which are (i) implementing FNN for predicting k in conductivity change, (ii) profiling four impedance inputs αξ consisting of magnitude input α|z|, phase angle input αθ, resistance input αR, and reactance input αx for filtering nonessential input, and (iii) selecting low and high frequency pair (frlh) by distribution of relaxation time (DRT) for eliminating parasitic noise effect. The training data set of FNN is generated to obtain the αξR10×17×10 by 10,200 cases by simulation under configuration and measurement parameters. The trained skin layer classification is validated through experiments with porcine skin under various sodium chloride (NaCl) solutions CNaCl = {15, 20, 25, 30, 35}[mM] in the dermis layer. FNN successfully classified conductivity change in the dermis layer from experiment with accuracy of 90.6% for the bipolar set-up at f6lh=10&100[kHz] and with the same accuracy for the tetrapolar at f8lh=35&100[kHz]. The measurement noise and systematic error in the experimental results are minimized by the proposed method using the feature extraction based on αξ at frlh.

Abstract Image

Abstract Image

Abstract Image

生物电阻抗谱中前馈神经网络的皮肤层分类。
利用生物电阻抗谱(BIS)中的前馈神经网络(FNN)训练的源指标ok (k=1:角质层,k=2:表皮,k=3:真皮,k=4:脂肪,k=5:角质层+表皮)对皮肤各层电导率变化进行了分类。在BIS研究中,将皮肤视为一个整体,限制了单个皮肤层电导率变化的区分,然而,使用FNN的皮肤层分类在准确分类皮肤层方面显示出希望,这对于预测源指标和启动皮肤介电特性诊断至关重要。ok由三个主要概念点进行训练,即(i)实现FNN以预测电导率变化中的k, (ii)绘制四个阻抗输入αξ,包括幅度输入α|z|,相角输入αθ,电阻输入α r和电抗输入αx,用于滤波非必要输入,以及(iii)通过弛豫时间(DRT)分布选择低频和高频对(frlh)以消除寄生噪声效应。在配置参数和测量参数下,通过10200例的仿真,生成FNN的训练数据集,得到αξ∈R10×17×10。在真皮层不同氯化钠(NaCl)溶液CNaCl = {15, 20, 25, 30, 35}[mM]下,以猪皮肤为实验对象,验证训练后的皮肤层分类方法。FNN成功地对实验中真皮层的电导率变化进行了分类,在f6lh=10 &100 [kHz]时,双极设置的准确率为90.6%,在f8lh=35 &100 [kHz]时,四极设置的准确率也相同。该方法利用基于αξ值frlh的特征提取,将实验结果中的测量噪声和系统误差降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信