Sarah M Khedr, Doaa A Ghareeb, Shadia A Fathy, Germine M Hamdy
{"title":"Berberine-loaded albumin nanoparticles reverse aflatoxin B1-induced liver hyperplasia.","authors":"Sarah M Khedr, Doaa A Ghareeb, Shadia A Fathy, Germine M Hamdy","doi":"10.1186/s40360-023-00683-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) can be produced from aflatoxin B1 (AFB1) administration. Although berberine (BER) acts as an anticancer agent and can counteract the AFB1 effect, it has low bioavailability. Nanotechnology can overcome this problem. This research aimed to synthesize berberine nanoparticles (NPs) and then estimate their therapeutic effect compared to that of berberine against aflatoxin-induced hepatotoxicity. The desolvation method was used to prepare BER-NPs. Aflatoxicosis was induced by 5 consecutive intraperitoneal injections (IP) of 200 µg/kg/day AFB dissolved in dimethylsulfoxide (DMSO). After the induction period, two treatments were performed: the first with 100 mg/kg BER and the second with 10 mg/kg BER-NPs. Liver, kidney, and diabetic profiles were estimated by using standardized methods. Hepatic oxidative stress, inflammatory, cancer cell proliferation, and invasion markers were used by ELISA and qPCR techniques. The TEM image shows that both BSA NPs and BER-BSA NPs had spherical, regular, and uniform shapes. The BER encapsulation efficiency % was 78.5. The formed-BER-BSA NPs showed a loading capacity % of 7.71 and the synthesis yield % of 92.6. AFB1 increases pro-oxidant markers, decreases antioxidant systems, stimulates inflammatory enzymes, inhibits anti-inflammatory markers, decreases tumor suppressor enzymes, increases oncogenes, increases glycolytic activity, prevents cell death, and promotes cell growth. Most of the biochemical markers and hepatic architecture were normalized in the BER-BSA NP-treated group but not in the BER-treated group. Altogether, the obtained data proved that treatment with BER-NPs was more efficient than treatment with berberine against aflatoxicoses induced in rats.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-023-00683-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) can be produced from aflatoxin B1 (AFB1) administration. Although berberine (BER) acts as an anticancer agent and can counteract the AFB1 effect, it has low bioavailability. Nanotechnology can overcome this problem. This research aimed to synthesize berberine nanoparticles (NPs) and then estimate their therapeutic effect compared to that of berberine against aflatoxin-induced hepatotoxicity. The desolvation method was used to prepare BER-NPs. Aflatoxicosis was induced by 5 consecutive intraperitoneal injections (IP) of 200 µg/kg/day AFB dissolved in dimethylsulfoxide (DMSO). After the induction period, two treatments were performed: the first with 100 mg/kg BER and the second with 10 mg/kg BER-NPs. Liver, kidney, and diabetic profiles were estimated by using standardized methods. Hepatic oxidative stress, inflammatory, cancer cell proliferation, and invasion markers were used by ELISA and qPCR techniques. The TEM image shows that both BSA NPs and BER-BSA NPs had spherical, regular, and uniform shapes. The BER encapsulation efficiency % was 78.5. The formed-BER-BSA NPs showed a loading capacity % of 7.71 and the synthesis yield % of 92.6. AFB1 increases pro-oxidant markers, decreases antioxidant systems, stimulates inflammatory enzymes, inhibits anti-inflammatory markers, decreases tumor suppressor enzymes, increases oncogenes, increases glycolytic activity, prevents cell death, and promotes cell growth. Most of the biochemical markers and hepatic architecture were normalized in the BER-BSA NP-treated group but not in the BER-treated group. Altogether, the obtained data proved that treatment with BER-NPs was more efficient than treatment with berberine against aflatoxicoses induced in rats.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.