{"title":"Functional architecture of M1 cells encoding movement direction.","authors":"Caterina Mazzetti, Alessandro Sarti, Giovanna Citti","doi":"10.1007/s10827-023-00850-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we propose a neurogeometrical model of the behaviour of cells of the arm area of the primary motor cortex (M1). We will mathematically express as a fiber bundle the hypercolumnar organization of this cortical area, first modelled by Georgopoulos (Georgopoulos et al., 1982; Georgopoulos, 2015). On this structure, we will consider the selective tuning of M1 neurons of kinematic variables of positions and directions of movement. We will then extend this model to encode the notion of fragments introduced by Hatsopoulos et al. (2007) which describes the selectivity of neurons to movement direction varying in time. This leads to consider a higher dimensional geometrical structure where fragments are represented as integral curves. A comparison with the curves obtained through numerical simulations and experimental data will be presented. Moreover, neural activity shows coherent behaviours represented in terms of movement trajectories pointing to a specific pattern of movement decomposition Kadmon Harpaz et al. (2019). Here, we will recover this pattern through a spectral clustering algorithm in the subriemannian structure we introduced, and compare our results with the neurophysiological one of Kadmon Harpaz et al. (2019).</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 3","pages":"299-327"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404581/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-023-00850-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we propose a neurogeometrical model of the behaviour of cells of the arm area of the primary motor cortex (M1). We will mathematically express as a fiber bundle the hypercolumnar organization of this cortical area, first modelled by Georgopoulos (Georgopoulos et al., 1982; Georgopoulos, 2015). On this structure, we will consider the selective tuning of M1 neurons of kinematic variables of positions and directions of movement. We will then extend this model to encode the notion of fragments introduced by Hatsopoulos et al. (2007) which describes the selectivity of neurons to movement direction varying in time. This leads to consider a higher dimensional geometrical structure where fragments are represented as integral curves. A comparison with the curves obtained through numerical simulations and experimental data will be presented. Moreover, neural activity shows coherent behaviours represented in terms of movement trajectories pointing to a specific pattern of movement decomposition Kadmon Harpaz et al. (2019). Here, we will recover this pattern through a spectral clustering algorithm in the subriemannian structure we introduced, and compare our results with the neurophysiological one of Kadmon Harpaz et al. (2019).
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.