{"title":"Y Chromosome Genomic Variations and Biological Significance in Human Diseases and Health.","authors":"Yoko Kuroki, Maki Fukami","doi":"10.1159/000531933","DOIUrl":null,"url":null,"abstract":"<p><p>The Y chromosome is a haploid genome unique to males with no genes essential for life. It is easily transmitted to the next generation without being repaired by recombination, even if a major genomic structural alteration occurs. On the other hand, the Y chromosome genome is basically a region transmitted only from father to son, reflecting a male-specific inheritance between generations. The Y chromosome exhibits genomic structural differences among different ethnic groups and individuals. The Y chromosome was previously thought to affect only male-specific phenotypes, but recent studies have revealed associations between the Y chromosomes and phenotypes common to both males and females, such as certain types of cancer and neuropsychiatric disorders. This evidence was discovered with the finding of the mosaic loss of the Y chromosome in somatic cells. This phenomenon is also affected by environmental factors, such as smoking and aging. In the past, functional analysis of the Y chromosome has been elucidated by assessing the function of Y chromosome-specific genes and the association between Y chromosome haplogroups and human phenotypes. These studies are currently being conducted intensively. Additionally, the recent advance of large-scale genome cohort studies has increased the amount of Y chromosome genomic information available for analysis, making it possible to conduct more precise studies of the relationship between genome structures and phenotypes. In this review, we will introduce recent analyses using large-scale genome cohort data and previously reported association studies between Y chromosome haplogroups and human phenotypes, such as male infertility, cancer, cardiovascular system traits, and neuropsychiatric disorders. The function and biological role of the Y chromosome in human phenotypes will also be discussed.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531933","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Y chromosome is a haploid genome unique to males with no genes essential for life. It is easily transmitted to the next generation without being repaired by recombination, even if a major genomic structural alteration occurs. On the other hand, the Y chromosome genome is basically a region transmitted only from father to son, reflecting a male-specific inheritance between generations. The Y chromosome exhibits genomic structural differences among different ethnic groups and individuals. The Y chromosome was previously thought to affect only male-specific phenotypes, but recent studies have revealed associations between the Y chromosomes and phenotypes common to both males and females, such as certain types of cancer and neuropsychiatric disorders. This evidence was discovered with the finding of the mosaic loss of the Y chromosome in somatic cells. This phenomenon is also affected by environmental factors, such as smoking and aging. In the past, functional analysis of the Y chromosome has been elucidated by assessing the function of Y chromosome-specific genes and the association between Y chromosome haplogroups and human phenotypes. These studies are currently being conducted intensively. Additionally, the recent advance of large-scale genome cohort studies has increased the amount of Y chromosome genomic information available for analysis, making it possible to conduct more precise studies of the relationship between genome structures and phenotypes. In this review, we will introduce recent analyses using large-scale genome cohort data and previously reported association studies between Y chromosome haplogroups and human phenotypes, such as male infertility, cancer, cardiovascular system traits, and neuropsychiatric disorders. The function and biological role of the Y chromosome in human phenotypes will also be discussed.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.