The Impact of Acute Mild Normobaric Hypoxia and a Single Bout of Exercise to Volitional Exhaustion on Cognitive Performance in Endurance and Strength-Trained Athletes: The role of BDNF, EP-1, Catecholamines and Lactate.
Zofia Piotrowicz, Miłosz Czuba, Małgorzata Chalimoniuk, Józef Langfort
{"title":"The Impact of Acute Mild Normobaric Hypoxia and a Single Bout of Exercise to Volitional Exhaustion on Cognitive Performance in Endurance and Strength-Trained Athletes: The role of BDNF, EP-1, Catecholamines and Lactate.","authors":"Zofia Piotrowicz, Miłosz Czuba, Małgorzata Chalimoniuk, Józef Langfort","doi":"10.5114/jhk/168282","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to examine whether a single bout of exercise to volitional exhaustion, performed under moderate normobaric hypoxia (H), would affect psychomotor performance (PP) in differently trained athletes. For this purpose, ten strength-trained (S) athletes, ten endurance-trained (E) athletes and ten healthy men leading a sedentary lifestyle as a control (C) group performed voluntarily two graded exercise tests until volitional exhaustion (EVE) under normoxia (N) and H (FiO<sub>2</sub> = 14.7%). We measured the peripheral level of the brain derived neurotrophic factor (BDNF), choice reaction time (CRT) and the number of correct reactions (NCR) as indices of PP. Psychomotor tests were performed at rest, immediately after the EVE and 3 minutes after the EVE. Venous blood samples were collected at rest, immediately after cessation of each EVE, and 1 h after each EVE. The results showed that the EVE significantly (p < 0.05) impaired CRT under N and H, and NCR under H only in the E group. The higher WR<sub>max</sub> in the E compared to the S and C groups was associated with a significant (p < 0.005) increase in adrenaline (A) and noradrenaline (NA). There were no significant differences between conditions (N vs. H) in the BDNF at rest and after exercise. The EVE impaired cognitive function only in the E group; higher involvement of the sympathetic nervous system, A and NA may also play a role in this phenomenon. Therefore, it can be concluded that exposure to H did not have a negative impact on CRT or NCR. Moreover, BDNF did not improve cognitive function.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"87 ","pages":"77-93"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/168282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the study was to examine whether a single bout of exercise to volitional exhaustion, performed under moderate normobaric hypoxia (H), would affect psychomotor performance (PP) in differently trained athletes. For this purpose, ten strength-trained (S) athletes, ten endurance-trained (E) athletes and ten healthy men leading a sedentary lifestyle as a control (C) group performed voluntarily two graded exercise tests until volitional exhaustion (EVE) under normoxia (N) and H (FiO2 = 14.7%). We measured the peripheral level of the brain derived neurotrophic factor (BDNF), choice reaction time (CRT) and the number of correct reactions (NCR) as indices of PP. Psychomotor tests were performed at rest, immediately after the EVE and 3 minutes after the EVE. Venous blood samples were collected at rest, immediately after cessation of each EVE, and 1 h after each EVE. The results showed that the EVE significantly (p < 0.05) impaired CRT under N and H, and NCR under H only in the E group. The higher WRmax in the E compared to the S and C groups was associated with a significant (p < 0.005) increase in adrenaline (A) and noradrenaline (NA). There were no significant differences between conditions (N vs. H) in the BDNF at rest and after exercise. The EVE impaired cognitive function only in the E group; higher involvement of the sympathetic nervous system, A and NA may also play a role in this phenomenon. Therefore, it can be concluded that exposure to H did not have a negative impact on CRT or NCR. Moreover, BDNF did not improve cognitive function.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.