Joonhyung Gil, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Keon Wook Kang
{"title":"Deep Learning-Based Feature Extraction from Whole-Body PET/CT Employing Maximum Intensity Projection Images: Preliminary Results of Lung Cancer Data.","authors":"Joonhyung Gil, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Keon Wook Kang","doi":"10.1007/s13139-023-00802-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Deep learning (DL) has been widely used in various medical imaging analyses. Because of the difficulty in processing volume data, it is difficult to train a DL model as an end-to-end approach using PET volume as an input for various purposes including diagnostic classification. We suggest an approach employing two maximum intensity projection (MIP) images generated by whole-body FDG PET volume to employ pre-trained models based on 2-D images.</p><p><strong>Methods: </strong>As a retrospective, proof-of-concept study, 562 [<sup>18</sup>F]FDG PET/CT images and clinicopathological factors of lung cancer patients were collected. MIP images of anterior and lateral views were used as inputs, and image features were extracted by a pre-trained convolutional neural network (CNN) model, ResNet-50. The relationship between the images was depicted on a parametric 2-D axes map using t-distributed stochastic neighborhood embedding (t-SNE), with clinicopathological factors.</p><p><strong>Results: </strong>A DL-based feature map extracted by two MIP images was embedded by t-SNE. According to the visualization of the t-SNE map, PET images were clustered by clinicopathological features. The representative difference between the clusters of PET patterns according to the posture of a patient was visually identified. This map showed a pattern of clustering according to various clinicopathological factors including sex as well as tumor staging.</p><p><strong>Conclusion: </strong>A 2-D image-based pre-trained model could extract image patterns of whole-body FDG PET volume by using anterior and lateral views of MIP images bypassing the direct use of 3-D PET volume that requires large datasets and resources. We suggest that this approach could be implemented as a backbone model for various applications for whole-body PET image analyses.</p>","PeriodicalId":19384,"journal":{"name":"Nuclear Medicine and Molecular Imaging","volume":"57 5","pages":"216-222"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Medicine and Molecular Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13139-023-00802-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Deep learning (DL) has been widely used in various medical imaging analyses. Because of the difficulty in processing volume data, it is difficult to train a DL model as an end-to-end approach using PET volume as an input for various purposes including diagnostic classification. We suggest an approach employing two maximum intensity projection (MIP) images generated by whole-body FDG PET volume to employ pre-trained models based on 2-D images.
Methods: As a retrospective, proof-of-concept study, 562 [18F]FDG PET/CT images and clinicopathological factors of lung cancer patients were collected. MIP images of anterior and lateral views were used as inputs, and image features were extracted by a pre-trained convolutional neural network (CNN) model, ResNet-50. The relationship between the images was depicted on a parametric 2-D axes map using t-distributed stochastic neighborhood embedding (t-SNE), with clinicopathological factors.
Results: A DL-based feature map extracted by two MIP images was embedded by t-SNE. According to the visualization of the t-SNE map, PET images were clustered by clinicopathological features. The representative difference between the clusters of PET patterns according to the posture of a patient was visually identified. This map showed a pattern of clustering according to various clinicopathological factors including sex as well as tumor staging.
Conclusion: A 2-D image-based pre-trained model could extract image patterns of whole-body FDG PET volume by using anterior and lateral views of MIP images bypassing the direct use of 3-D PET volume that requires large datasets and resources. We suggest that this approach could be implemented as a backbone model for various applications for whole-body PET image analyses.
期刊介绍:
Nuclear Medicine and Molecular Imaging (Nucl Med Mol Imaging) is an official journal of the Korean Society of Nuclear Medicine, which bimonthly publishes papers on February, April, June, August, October, and December about nuclear medicine and related sciences such as radiochemistry, radiopharmacy, dosimetry and pharmacokinetics / pharmacodynamics of radiopharmaceuticals, nuclear and molecular imaging analysis, nuclear and molecular imaging instrumentation, radiation biology and radionuclide therapy. The journal specially welcomes works of artificial intelligence applied to nuclear medicine. The journal will also welcome original works relating to molecular imaging research such as the development of molecular imaging probes, reporter imaging assays, imaging cell trafficking, imaging endo(exo)genous gene expression, and imaging signal transduction. Nucl Med Mol Imaging publishes the following types of papers: original articles, reviews, case reports, editorials, interesting images, and letters to the editor.
The Korean Society of Nuclear Medicine (KSNM)
KSNM is a scientific and professional organization founded in 1961 and a member of the Korean Academy of Medical Sciences of the Korean Medical Association which was established by The Medical Services Law. The aims of KSNM are the promotion of nuclear medicine and cooperation of each member. The business of KSNM includes holding academic meetings and symposia, the publication of journals and books, planning and research of promoting science and health, and training and qualification of nuclear medicine specialists.