Molecularly engineered dual-network photothermal hydrogel delivery system with enhanced mechanical properties, antibacterial ability and angiogenic effect for accelerating wound healing
{"title":"Molecularly engineered dual-network photothermal hydrogel delivery system with enhanced mechanical properties, antibacterial ability and angiogenic effect for accelerating wound healing","authors":"Guo Chen, Qiaoqiao Wang, Yumeng Zhu, Minqian Zhao, Siyuan Ma, Yifeng Bai, Jingfeng Wang, Meijuan Zou, Gang Cheng","doi":"10.1016/j.jmbbm.2023.106081","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Bacterial infection caused by trauma and chronic wounds in the most mobile area remains a challenge in clinic. It is difficult to achieve the synergistic effects of antibacterial capacity and skin regeneration using conventional therapeutic methods. Developing a multi-functional hydrogel dressing that can cope with the complex wound environment will contribute to the healing and therapeutic effects. In this work, a novel Cur@PAM/TA-Cu photothermal hydrogel delivery system was prepared by engineering tannic acid (TA) into covalent cross-linked polyacrylamide (PAM) on which the chelating tannic acid-copper metal–polyphenolic network (TA-Cu MPN) was imposed to form dual-crosslinked networks, and the natural medicine curcumin was loaded eventually. The molecularly engineered dual-crosslinked networks resulted in enhanced </span>mechanical properties<span> including bio-adhesion, tensile strength and self-healing, which made the hydrogel suitable for dynamic wound and various application scenarios. In addition, the excellent photothermal capacity, antioxidant effect and biocompatibility of the hydrogel were demonstrated. Notably, this curcumin loaded photothermal hydrogel exhibited superior antibacterial capacity (almost 100% killing ratio to </span></span><em>E</em>. coli and <em>S</em><span>. aureus) under 808 nm laser irradiation. Meanwhile, the </span><em>in vivo</em> wound healing experiment results revealed that the anti-inflammation and proangiogenic effect of Cur@PAM/TA-Cu hydrogel successfully shortened the healing time of wound and the reconstruction of skin structure and function. Thus, this dual-crosslinked multi-functional hydrogel delivery system is a promising wound dressing for accelerating wound healing.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"146 ","pages":"Article 106081"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616123004344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infection caused by trauma and chronic wounds in the most mobile area remains a challenge in clinic. It is difficult to achieve the synergistic effects of antibacterial capacity and skin regeneration using conventional therapeutic methods. Developing a multi-functional hydrogel dressing that can cope with the complex wound environment will contribute to the healing and therapeutic effects. In this work, a novel Cur@PAM/TA-Cu photothermal hydrogel delivery system was prepared by engineering tannic acid (TA) into covalent cross-linked polyacrylamide (PAM) on which the chelating tannic acid-copper metal–polyphenolic network (TA-Cu MPN) was imposed to form dual-crosslinked networks, and the natural medicine curcumin was loaded eventually. The molecularly engineered dual-crosslinked networks resulted in enhanced mechanical properties including bio-adhesion, tensile strength and self-healing, which made the hydrogel suitable for dynamic wound and various application scenarios. In addition, the excellent photothermal capacity, antioxidant effect and biocompatibility of the hydrogel were demonstrated. Notably, this curcumin loaded photothermal hydrogel exhibited superior antibacterial capacity (almost 100% killing ratio to E. coli and S. aureus) under 808 nm laser irradiation. Meanwhile, the in vivo wound healing experiment results revealed that the anti-inflammation and proangiogenic effect of Cur@PAM/TA-Cu hydrogel successfully shortened the healing time of wound and the reconstruction of skin structure and function. Thus, this dual-crosslinked multi-functional hydrogel delivery system is a promising wound dressing for accelerating wound healing.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.