Zhaoyang Fan, Liangying Zhang, Shaoting Zhang, Anbu Liu, Shujing Li, Xu Cao, Jinhai Tian, Sien Zhao, Jianmin Sun
{"title":"Farnesyltransferase (FTase) Inhibitors Increase Inhibition of KIT Mutants by Imatinib.","authors":"Zhaoyang Fan, Liangying Zhang, Shaoting Zhang, Anbu Liu, Shujing Li, Xu Cao, Jinhai Tian, Sien Zhao, Jianmin Sun","doi":"10.52547/rbmb.12.1.74","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mutations in the receptor tyrosine kinase KIT are the major cause of gastrointestinal stromal tumors. KIT-mediated activation of the RAS/RAF/MEK/ERK and PI3 kinase/AKT pathways plays an important role in KIT mutant-mediated cell transformation.</p><p><strong>Methods: </strong>The frequently seen primary KIT mutations W557K558del and V560D, and the secondary KIT mutations V654A and N822K, in gastrointestinal stromal tumors were stably transfected into Ba/F3 cells. Cell proliferation was examined with a CCK kit, and cell survival and cell cycle were examined by flow cytometry. Cell signaling was examined by western blot.</p><p><strong>Results: </strong>We found that farnesyltransferase inhibitors tipifarnib and lonafarnib, which inhibit RAS activity, inhibited ERK activation mediated by both wild-type and KIT mutants, which often occur in gastrointestinal stromal tumors. Correspondingly, both wild-type and KIT mutant-mediated cell survival and proliferation were inhibited by both inhibitors. Imatinib is used as the first-line targeted therapy for gastrointestinal stromal tumors in the clinic. In our study, both inhibitors increased imatinib-mediated inhibition of cell survival and proliferation induced by both wild-type and KIT mutants. Similar to the primary KIT mutations, secondary mutations of KIT-induced ERK activation and cell response were inhibited by both inhibitors.</p><p><strong>Conclusions: </strong>Our results suggested the potential benefit of farnesyltransferase inhibitors either alone or combined with imatinib in the treatment of gastrointestinal stromal tumors carrying KIT mutations.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505455/pdf/rbmb-12-74.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/rbmb.12.1.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mutations in the receptor tyrosine kinase KIT are the major cause of gastrointestinal stromal tumors. KIT-mediated activation of the RAS/RAF/MEK/ERK and PI3 kinase/AKT pathways plays an important role in KIT mutant-mediated cell transformation.
Methods: The frequently seen primary KIT mutations W557K558del and V560D, and the secondary KIT mutations V654A and N822K, in gastrointestinal stromal tumors were stably transfected into Ba/F3 cells. Cell proliferation was examined with a CCK kit, and cell survival and cell cycle were examined by flow cytometry. Cell signaling was examined by western blot.
Results: We found that farnesyltransferase inhibitors tipifarnib and lonafarnib, which inhibit RAS activity, inhibited ERK activation mediated by both wild-type and KIT mutants, which often occur in gastrointestinal stromal tumors. Correspondingly, both wild-type and KIT mutant-mediated cell survival and proliferation were inhibited by both inhibitors. Imatinib is used as the first-line targeted therapy for gastrointestinal stromal tumors in the clinic. In our study, both inhibitors increased imatinib-mediated inhibition of cell survival and proliferation induced by both wild-type and KIT mutants. Similar to the primary KIT mutations, secondary mutations of KIT-induced ERK activation and cell response were inhibited by both inhibitors.
Conclusions: Our results suggested the potential benefit of farnesyltransferase inhibitors either alone or combined with imatinib in the treatment of gastrointestinal stromal tumors carrying KIT mutations.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.