{"title":"Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin.","authors":"Michael Battaglia, Lee Ann Garrett-Sinha","doi":"10.1186/s42826-023-00169-0","DOIUrl":null,"url":null,"abstract":"<p><p>Skin ulcers, skin dermatitis and skin infections are common phenomena in colonies of laboratory mice and are often found at increased prevalence in certain immunocompromised strains. While in many cases these skin conditions are mild, in other cases they can be severe and lead to animal morbidity. Furthermore, the presence of skin infections and ulcerations can complicate the interpretation of experimental protocols, including those examining immune cell activation. Bacterial species in the genus Staphylococcus are the most common pathogens recovered from skin lesions in mice. In particular, Staphylococcus aureus and Staphylococcus xylosus have both been implicated as pathogens on murine skin. Staphylococcus aureus is a well-known pathogen of human skin, but S. xylosus skin infections in humans have not been described, indicating that there is a species-specific difference in the ability of S. xylosus to serve as a skin pathogen. The aim of this review is to summarize studies that link S. aureus and S. xylosus to skin infections of mice and to describe factors involved in their adherence to tissue and their virulence. We discuss potential differences in mouse and human skin that might underlie the ability of S. xylosus to act as a pathogen on murine skin, but not human skin. Finally, we also describe mouse mutants that have shown increased susceptibility to skin infections with staphylococcal bacteria. These mutants point to pathways that are important in the control of commensal staphylococcal bacteria. The information here may be useful to researchers who are working with mouse strains that are prone to skin infections with staphylococcal bacteria.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394794/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-023-00169-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Skin ulcers, skin dermatitis and skin infections are common phenomena in colonies of laboratory mice and are often found at increased prevalence in certain immunocompromised strains. While in many cases these skin conditions are mild, in other cases they can be severe and lead to animal morbidity. Furthermore, the presence of skin infections and ulcerations can complicate the interpretation of experimental protocols, including those examining immune cell activation. Bacterial species in the genus Staphylococcus are the most common pathogens recovered from skin lesions in mice. In particular, Staphylococcus aureus and Staphylococcus xylosus have both been implicated as pathogens on murine skin. Staphylococcus aureus is a well-known pathogen of human skin, but S. xylosus skin infections in humans have not been described, indicating that there is a species-specific difference in the ability of S. xylosus to serve as a skin pathogen. The aim of this review is to summarize studies that link S. aureus and S. xylosus to skin infections of mice and to describe factors involved in their adherence to tissue and their virulence. We discuss potential differences in mouse and human skin that might underlie the ability of S. xylosus to act as a pathogen on murine skin, but not human skin. Finally, we also describe mouse mutants that have shown increased susceptibility to skin infections with staphylococcal bacteria. These mutants point to pathways that are important in the control of commensal staphylococcal bacteria. The information here may be useful to researchers who are working with mouse strains that are prone to skin infections with staphylococcal bacteria.