AI-driven and automated MRI sequence optimization in scanner-independent MRI sequences formulated by a domain-specific language.

Daniel Christopher Hoinkiss, Jörn Huber, Christina Plump, Christoph Lüth, Rolf Drechsler, Matthias Günther
{"title":"AI-driven and automated MRI sequence optimization in scanner-independent MRI sequences formulated by a domain-specific language.","authors":"Daniel Christopher Hoinkiss,&nbsp;Jörn Huber,&nbsp;Christina Plump,&nbsp;Christoph Lüth,&nbsp;Rolf Drechsler,&nbsp;Matthias Günther","doi":"10.3389/fnimg.2023.1090054","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The complexity of Magnetic Resonance Imaging (MRI) sequences requires expert knowledge about the underlying contrast mechanisms to select from the wide range of available applications and protocols. Automation of this process using machine learning (ML) can support the radiologists and MR technicians by complementing their experience and finding the optimal MRI sequence and protocol for certain applications.</p><p><strong>Methods: </strong>We define domain-specific languages (DSL) both for describing MRI sequences and for formulating clinical demands for sequence optimization. By using various abstraction levels, we allow different key users exact definitions of MRI sequences and make them more accessible to ML. We use a vendor-independent MRI framework (gammaSTAR) to build sequences that are formulated by the DSL and export them using the generic file format introduced by the Pulseq framework, making it possible to simulate phantom data using the open-source MR simulation framework JEMRIS to build a training database that relates input MRI sequences to output sets of metrics. Utilizing ML techniques, we learn this correspondence to allow efficient optimization of MRI sequences meeting the clinical demands formulated as a starting point.</p><p><strong>Results: </strong>ML methods are capable of capturing the relation of input and simulated output parameters. Evolutionary algorithms show promising results in finding optimal MRI sequences with regards to the training data. Simulated and acquired MRI data show high correspondence to the initial set of requirements.</p><p><strong>Discussion: </strong>This work has the potential to offer optimal solutions for different clinical scenarios, potentially reducing exam times by preventing suboptimal MRI protocol settings. Future work needs to cover additional DSL layers of higher flexibility as well as an optimization of the underlying MRI simulation process together with an extension of the optimization method.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1090054"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406289/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2023.1090054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction: The complexity of Magnetic Resonance Imaging (MRI) sequences requires expert knowledge about the underlying contrast mechanisms to select from the wide range of available applications and protocols. Automation of this process using machine learning (ML) can support the radiologists and MR technicians by complementing their experience and finding the optimal MRI sequence and protocol for certain applications.

Methods: We define domain-specific languages (DSL) both for describing MRI sequences and for formulating clinical demands for sequence optimization. By using various abstraction levels, we allow different key users exact definitions of MRI sequences and make them more accessible to ML. We use a vendor-independent MRI framework (gammaSTAR) to build sequences that are formulated by the DSL and export them using the generic file format introduced by the Pulseq framework, making it possible to simulate phantom data using the open-source MR simulation framework JEMRIS to build a training database that relates input MRI sequences to output sets of metrics. Utilizing ML techniques, we learn this correspondence to allow efficient optimization of MRI sequences meeting the clinical demands formulated as a starting point.

Results: ML methods are capable of capturing the relation of input and simulated output parameters. Evolutionary algorithms show promising results in finding optimal MRI sequences with regards to the training data. Simulated and acquired MRI data show high correspondence to the initial set of requirements.

Discussion: This work has the potential to offer optimal solutions for different clinical scenarios, potentially reducing exam times by preventing suboptimal MRI protocol settings. Future work needs to cover additional DSL layers of higher flexibility as well as an optimization of the underlying MRI simulation process together with an extension of the optimization method.

Abstract Image

Abstract Image

Abstract Image

人工智能驱动和自动化的MRI序列优化,在扫描仪独立的MRI序列由特定领域的语言制定。
简介:磁共振成像(MRI)序列的复杂性需要有关潜在对比机制的专业知识,以便从广泛的可用应用和协议中进行选择。使用机器学习(ML)实现这一过程的自动化,可以通过补充放射科医生和MR技术人员的经验,并为某些应用找到最佳的MRI序列和协议,从而为他们提供支持。方法:我们定义了领域特定语言(DSL),用于描述MRI序列和制定序列优化的临床需求。通过使用不同的抽象级别,我们允许不同的关键用户精确定义MRI序列,并使它们更容易被ML访问。我们使用独立于供应商的MRI框架(gammaSTAR)来构建由DSL制定的序列,并使用Pulseq框架引入的通用文件格式导出它们。使用开源的MR模拟框架JEMRIS来模拟幻像数据,从而建立一个训练数据库,将输入的MRI序列与输出的指标集联系起来。利用机器学习技术,我们学习这种对应关系,以便有效地优化MRI序列,以满足临床需求为出发点。结果:机器学习方法能够捕获输入参数和模拟输出参数之间的关系。进化算法在寻找关于训练数据的最佳MRI序列方面显示出有希望的结果。模拟和获取的MRI数据显示与初始要求高度对应。讨论:这项工作有可能为不同的临床情况提供最佳解决方案,通过防止次优MRI方案设置,有可能减少检查时间。未来的工作需要涵盖更高灵活性的额外DSL层,以及底层MRI模拟过程的优化以及优化方法的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信