Yuan Yee Lee , Yein Oh , Min-Soo Seo , Min-Goo Seo , Jee Eun Han , Kyoo-Tae Kim , Jin-Kyu Park , Sung Dae Kim , Sang-Joon Park , Dongmi Kwak , Man Hee Rhee
{"title":"The anti-platelet activity of panaxadiol fraction and panaxatriol fraction of Korean Red Ginseng in vitro and ex vivo","authors":"Yuan Yee Lee , Yein Oh , Min-Soo Seo , Min-Goo Seo , Jee Eun Han , Kyoo-Tae Kim , Jin-Kyu Park , Sung Dae Kim , Sang-Joon Park , Dongmi Kwak , Man Hee Rhee","doi":"10.1016/j.jgr.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The anti-platelet activity of the saponin fraction of Korean Red Ginseng has been widely studied. The saponin fraction consists of the panaxadiol fraction (PDF) and panaxatriol fraction (PTF); however, their anti-platelet activity is yet to be compared. Our study aimed to investigate the potency of anti-platelet activity of PDF and PTF and to elucidate how well they retain their anti-platelet activity via different administration routes.</p></div><div><h3>Methods</h3><p>For ex vivo studies, Sprague-Dawley rats were orally administered 250 mg/kg PDF and PTF for 7 consecutive days before blood collection via cardiac puncture. Platelet aggregation was conducted after isolation of the washed platelets. For in vitro studies, washed platelets were obtained from Sprague-Dawley rats. Collagen and adenosine diphosphate (ADP) were used to induce platelet aggregation. Collagen was used as an agonist for assaying adenosine triphosphate release, thromboxane B2, serotonin, cyclic adenosine monophosphate, and cyclic guanosine monophosphate (cGMP) release.</p></div><div><h3>Results</h3><p>When treated ex vivo, PDF not only inhibited ADP and collagen-induced platelet aggregation, but also upregulated cGMP levels and reduced platelet adhesion to fibronectin. Furthermore, it also inhibited Akt phosphorylation induced by collagen treatment. Panaxadiol fraction did not exert any anti-platelet activity in vitro, whereas PTF exhibited potent anti-platelet activity, inhibiting ADP, collagen, and thrombin-induced platelet aggregation, but significantly elevated levels of cGMP.</p></div><div><h3>Conclusion</h3><p>Our study showed that in vitro and ex vivo PDF and PTF treatments exhibited different potency levels, indicating possible metabolic conversions of ginsenosides, which altered the content of ginsenosides capable of preventing platelet aggregation.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 5","pages":"Pages 638-644"},"PeriodicalIF":6.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/67/main.PMC10499584.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845323000295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The anti-platelet activity of the saponin fraction of Korean Red Ginseng has been widely studied. The saponin fraction consists of the panaxadiol fraction (PDF) and panaxatriol fraction (PTF); however, their anti-platelet activity is yet to be compared. Our study aimed to investigate the potency of anti-platelet activity of PDF and PTF and to elucidate how well they retain their anti-platelet activity via different administration routes.
Methods
For ex vivo studies, Sprague-Dawley rats were orally administered 250 mg/kg PDF and PTF for 7 consecutive days before blood collection via cardiac puncture. Platelet aggregation was conducted after isolation of the washed platelets. For in vitro studies, washed platelets were obtained from Sprague-Dawley rats. Collagen and adenosine diphosphate (ADP) were used to induce platelet aggregation. Collagen was used as an agonist for assaying adenosine triphosphate release, thromboxane B2, serotonin, cyclic adenosine monophosphate, and cyclic guanosine monophosphate (cGMP) release.
Results
When treated ex vivo, PDF not only inhibited ADP and collagen-induced platelet aggregation, but also upregulated cGMP levels and reduced platelet adhesion to fibronectin. Furthermore, it also inhibited Akt phosphorylation induced by collagen treatment. Panaxadiol fraction did not exert any anti-platelet activity in vitro, whereas PTF exhibited potent anti-platelet activity, inhibiting ADP, collagen, and thrombin-induced platelet aggregation, but significantly elevated levels of cGMP.
Conclusion
Our study showed that in vitro and ex vivo PDF and PTF treatments exhibited different potency levels, indicating possible metabolic conversions of ginsenosides, which altered the content of ginsenosides capable of preventing platelet aggregation.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.