Heba Khateb, Andrew L Hook, Stefanie Kern, Julie A Watts, Sonali Singh, Darryl Jackson, Luisa Marinez-Pomares, Paul Williams, Morgan R Alexander
{"title":"Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS.","authors":"Heba Khateb, Andrew L Hook, Stefanie Kern, Julie A Watts, Sonali Singh, Darryl Jackson, Luisa Marinez-Pomares, Paul Williams, Morgan R Alexander","doi":"10.1116/6.0002604","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preserve the 3D location of an analyte in a sample. Polysaccharides are recognized as challenging analytes in the mass spectrometry of liquids and are also difficult to identify and assign using SIMS. Psl is an exopolysaccharide produced by Pseudomonas aeruginosa, which plays a key role in biofilm formation and maturation. In this Letter, we describe the use of the OrbiTrap analyzer with SIMS (3D OrbiSIMS) for the label-free mass spectrometry of Psl, taking advantage of its high mass resolving power for accurate secondary ion assignment. We study a P. aeruginosa biofilm and compare it with purified Psl to enable the assignment of secondary ions specific to the Psl structure. This resulted in the identification of 17 peaks that could confidently be ascribed to Psl fragments within the biofilm matrix. The complementary approach of the following neutral loss sequences is also shown to identify multiple oligosaccharide fragments without the requirement of a biological reference sample.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002604","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preserve the 3D location of an analyte in a sample. Polysaccharides are recognized as challenging analytes in the mass spectrometry of liquids and are also difficult to identify and assign using SIMS. Psl is an exopolysaccharide produced by Pseudomonas aeruginosa, which plays a key role in biofilm formation and maturation. In this Letter, we describe the use of the OrbiTrap analyzer with SIMS (3D OrbiSIMS) for the label-free mass spectrometry of Psl, taking advantage of its high mass resolving power for accurate secondary ion assignment. We study a P. aeruginosa biofilm and compare it with purified Psl to enable the assignment of secondary ions specific to the Psl structure. This resulted in the identification of 17 peaks that could confidently be ascribed to Psl fragments within the biofilm matrix. The complementary approach of the following neutral loss sequences is also shown to identify multiple oligosaccharide fragments without the requirement of a biological reference sample.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.