Modulatory Role of Curcumin on Cobalt-Induced Memory Deficit, Hippocampal Oxidative Damage, Astrocytosis, and Nrf2 Expression.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Rademene S Oria, Godson E Anyanwu, Emmanuel A Esom, Johnson N Nto, Amechi U Katchy, Augustine U Agu, Omamuyovwi M Ijomone
{"title":"Modulatory Role of Curcumin on Cobalt-Induced Memory Deficit, Hippocampal Oxidative Damage, Astrocytosis, and Nrf2 Expression.","authors":"Rademene S Oria,&nbsp;Godson E Anyanwu,&nbsp;Emmanuel A Esom,&nbsp;Johnson N Nto,&nbsp;Amechi U Katchy,&nbsp;Augustine U Agu,&nbsp;Omamuyovwi M Ijomone","doi":"10.1007/s12640-023-00635-6","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical overexposure is a growing environmental risk factor for many medical issues. Cobalt toxicity from environmental, industrial, and medical exposure has previously been linked to neurological impairment. Hence, the current study looked into the neuroprotective potential of curcumin, a natural polyphenol contained in the spice turmeric, against cobalt-induced neurotoxicity. Adult rats were randomly divided into six groups as follows: control, 40 mg/kg cobalt chloride (CoCl<sub>2</sub>) only, 240 mg/kg curcumin only, 120 mg/kg or 240 mg/kg curcumin, or 100 mg/kg vitamin C co-administered with CoCl<sub>2</sub>. The administration was via oral route daily for 4 weeks. After that, neurobehavioral tests were undertaken to evaluate short-term spatial memory. Biochemical investigation was performed to determine the hippocampal levels of status via measures of SOD, CAT, GST, and LPO. Furthermore, immunohistochemical assessment of the expression of GFAP and Nrf2 in the hippocampus was carried out. In the CoCl<sub>2</sub> group, the results showed altered behavioral responses, a decrease in antioxidant activities, increased expression of GFAP and the number of activated astrocytes, and decreased immunoexpression of Nrf2. These effects were mitigated in the curcumin- and vitamin C-treated groups. These results collectively imply that curcumin enhances memory functions in rats exposed to cobalt possibly by attenuating oxidative responses, mitigating astrocytosis, and modulating Nrf2 signaling.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"41 3","pages":"201-211"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00635-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Chemical overexposure is a growing environmental risk factor for many medical issues. Cobalt toxicity from environmental, industrial, and medical exposure has previously been linked to neurological impairment. Hence, the current study looked into the neuroprotective potential of curcumin, a natural polyphenol contained in the spice turmeric, against cobalt-induced neurotoxicity. Adult rats were randomly divided into six groups as follows: control, 40 mg/kg cobalt chloride (CoCl2) only, 240 mg/kg curcumin only, 120 mg/kg or 240 mg/kg curcumin, or 100 mg/kg vitamin C co-administered with CoCl2. The administration was via oral route daily for 4 weeks. After that, neurobehavioral tests were undertaken to evaluate short-term spatial memory. Biochemical investigation was performed to determine the hippocampal levels of status via measures of SOD, CAT, GST, and LPO. Furthermore, immunohistochemical assessment of the expression of GFAP and Nrf2 in the hippocampus was carried out. In the CoCl2 group, the results showed altered behavioral responses, a decrease in antioxidant activities, increased expression of GFAP and the number of activated astrocytes, and decreased immunoexpression of Nrf2. These effects were mitigated in the curcumin- and vitamin C-treated groups. These results collectively imply that curcumin enhances memory functions in rats exposed to cobalt possibly by attenuating oxidative responses, mitigating astrocytosis, and modulating Nrf2 signaling.

Abstract Image

姜黄素对钴诱导的记忆缺陷、海马氧化损伤、星形细胞增生和Nrf2表达的调节作用。
化学品过度暴露是许多医疗问题日益增长的环境风险因素。环境、工业和医疗接触产生的钴毒性以前与神经损伤有关。因此,目前的研究着眼于姜黄素的神经保护潜力,姜黄素是香料姜黄中含有的一种天然多酚,可以对抗钴诱导的神经毒性。将成年大鼠随机分为对照组、CoCl2单独给药40 mg/kg组、姜黄素单独给药240 mg/kg组、姜黄素120 mg/kg或240 mg/kg组、维生素C与CoCl2共给药100 mg/kg组。每日口服给药,连续4周。之后,进行神经行为测试来评估短期空间记忆。生化研究通过测量SOD、CAT、GST和LPO来确定海马的状态水平。此外,免疫组化检测海马组织中GFAP和Nrf2的表达。在CoCl2组中,结果显示行为反应改变,抗氧化活性降低,GFAP表达和活化星形胶质细胞数量增加,Nrf2免疫表达降低。这些影响在姜黄素和维生素c处理组得到缓解。这些结果共同表明,姜黄素可能通过减弱氧化反应、减轻星形细胞增殖和调节Nrf2信号传导来增强暴露于钴的大鼠的记忆功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信