Agathangelos Chatzichristofi, Vasileios Sagris, Aristos Pallaris, Marios Eftychiou, Ioanna Kalvari, Nicholas Price, Theodosios Theodosiou, Ioannis Iliopoulos, Ioannis P Nezis, Vasilis J Promponas
{"title":"LIRcentral: a manually curated online database of experimentally validated functional LIR motifs.","authors":"Agathangelos Chatzichristofi, Vasileios Sagris, Aristos Pallaris, Marios Eftychiou, Ioanna Kalvari, Nicholas Price, Theodosios Theodosiou, Ioannis Iliopoulos, Ioannis P Nezis, Vasilis J Promponas","doi":"10.1080/15548627.2023.2235851","DOIUrl":null,"url":null,"abstract":"<p><p>Several selective macroautophagy receptor and adaptor proteins bind members of the Atg8 (autophagy related 8) family using short linear motifs (SLiMs), most often referred to as Atg8-family interacting motifs (AIMs) or LC3-interacting regions (LIRs). AIM/LIR motifs have been extensively studied during the last fifteen years, since they can uncover the underlying biological mechanisms and possible substrates for this key catabolic process of eukaryotic cells. Prompted by the fact that experimental information regarding LIR motifs can be found scattered across heterogeneous literature resources, we have developed LIRcentral (https://lircentral.eu), a freely available online repository for user-friendly access to comprehensive, high-quality information regarding LIR motifs from manually curated publications. Herein, we describe the development of LIRcentral and showcase currently available data and features, along with our plans for the expansion of this resource. Information incorporated in LIRcentral is useful for accomplishing a variety of research tasks, including: (i) guiding wet biology researchers for the characterization of novel instances of LIR motifs, (ii) giving bioinformaticians/computational biologists access to high-quality LIR motifs for building novel prediction methods for LIR motifs and LIR containing proteins (LIRCPs) and (iii) performing analyses to better understand the biological importance/features of functional LIR motifs. We welcome feedback on the LIRcentral content and functionality by all interested researchers and anticipate this work to spearhead a community effort for sustaining this resource which will further promote progress in studying LIR motifs/LIRCPs.<b>Abbreviations</b>: AIM, Atg8-family interacting motif; Atg8, autophagy related 8; GABARAP, GABA type A receptor-associated protein; LIR, LC3-interacting region; LIRCP, LIR-containing protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PMID, PubMed identifier; PPI, protein-protein interaction; SLiM, short linear motif.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3189-3200"},"PeriodicalIF":14.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621281/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2235851","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Several selective macroautophagy receptor and adaptor proteins bind members of the Atg8 (autophagy related 8) family using short linear motifs (SLiMs), most often referred to as Atg8-family interacting motifs (AIMs) or LC3-interacting regions (LIRs). AIM/LIR motifs have been extensively studied during the last fifteen years, since they can uncover the underlying biological mechanisms and possible substrates for this key catabolic process of eukaryotic cells. Prompted by the fact that experimental information regarding LIR motifs can be found scattered across heterogeneous literature resources, we have developed LIRcentral (https://lircentral.eu), a freely available online repository for user-friendly access to comprehensive, high-quality information regarding LIR motifs from manually curated publications. Herein, we describe the development of LIRcentral and showcase currently available data and features, along with our plans for the expansion of this resource. Information incorporated in LIRcentral is useful for accomplishing a variety of research tasks, including: (i) guiding wet biology researchers for the characterization of novel instances of LIR motifs, (ii) giving bioinformaticians/computational biologists access to high-quality LIR motifs for building novel prediction methods for LIR motifs and LIR containing proteins (LIRCPs) and (iii) performing analyses to better understand the biological importance/features of functional LIR motifs. We welcome feedback on the LIRcentral content and functionality by all interested researchers and anticipate this work to spearhead a community effort for sustaining this resource which will further promote progress in studying LIR motifs/LIRCPs.Abbreviations: AIM, Atg8-family interacting motif; Atg8, autophagy related 8; GABARAP, GABA type A receptor-associated protein; LIR, LC3-interacting region; LIRCP, LIR-containing protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PMID, PubMed identifier; PPI, protein-protein interaction; SLiM, short linear motif.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.