{"title":"Tracking by segmentation with future motion estimation applied to person-following robots.","authors":"Shenlu Jiang, Runze Cui, Runze Wei, Zhiyang Fu, Zhonghua Hong, Guofu Feng","doi":"10.3389/fnbot.2023.1255085","DOIUrl":null,"url":null,"abstract":"<p><p>Person-following is a crucial capability for service robots, and the employment of vision technology is a leading trend in building environmental understanding. While most existing methodologies rely on a tracking-by-detection strategy, which necessitates extensive datasets for training and yet remains susceptible to environmental noise, we propose a novel approach: real-time tracking-by-segmentation with a future motion estimation framework. This framework facilitates pixel-level tracking of a target individual and predicts their future motion. Our strategy leverages a single-shot segmentation tracking neural network for precise foreground segmentation to track the target, overcoming the limitations of using a rectangular region of interest (ROI). Here we clarify that, while the ROI provides a broad context, the segmentation within this bounding box offers a detailed and more accurate position of the human subject. To further improve our approach, a classification-lock pre-trained layer is utilized to form a constraint that curbs feature outliers originating from the person being tracked. A discriminative correlation filter estimates the potential target region in the scene to prevent foreground misrecognition, while a motion estimation neural network anticipates the target's future motion for use in the control module. We validated our proposed methodology using the VOT, LaSot, YouTube-VOS, and Davis tracking datasets, demonstrating its effectiveness. Notably, our framework supports long-term person-following tasks in indoor environments, showing promise for practical implementation in service robots.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1255085"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494445/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1255085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Person-following is a crucial capability for service robots, and the employment of vision technology is a leading trend in building environmental understanding. While most existing methodologies rely on a tracking-by-detection strategy, which necessitates extensive datasets for training and yet remains susceptible to environmental noise, we propose a novel approach: real-time tracking-by-segmentation with a future motion estimation framework. This framework facilitates pixel-level tracking of a target individual and predicts their future motion. Our strategy leverages a single-shot segmentation tracking neural network for precise foreground segmentation to track the target, overcoming the limitations of using a rectangular region of interest (ROI). Here we clarify that, while the ROI provides a broad context, the segmentation within this bounding box offers a detailed and more accurate position of the human subject. To further improve our approach, a classification-lock pre-trained layer is utilized to form a constraint that curbs feature outliers originating from the person being tracked. A discriminative correlation filter estimates the potential target region in the scene to prevent foreground misrecognition, while a motion estimation neural network anticipates the target's future motion for use in the control module. We validated our proposed methodology using the VOT, LaSot, YouTube-VOS, and Davis tracking datasets, demonstrating its effectiveness. Notably, our framework supports long-term person-following tasks in indoor environments, showing promise for practical implementation in service robots.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.