{"title":"Deep learning-based classification of microalgae using light and scanning electron microscopy images","authors":"Mesut Ersin Sonmez , Betul Altinsoy , Betul Yilmaz Ozturk , Numan Emre Gumus , Numan Eczacioglu","doi":"10.1016/j.micron.2023.103506","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Microalgae possess diverse applications, such as food production, animal feed, cosmetics, plastics manufacturing, and renewable energy sources. However, uncontrolled proliferation, known as algal bloom, can detrimentally impact ecosystems. Therefore, the accurate detection, monitoring, identification, and tracking of algae are imperative, albeit demanding considerable time, effort, and expertise, as well as financial resources. </span>Deep learning<span>, employing image pattern recognition, emerges as a practical and promising approach for rapid and precise microalgae cell counting and identification. In this study, we processed light microscopy (LM) and scanning electron microscopy (SEM) images of two </span></span>Cyanobacteria<span> species and three Chlorophyta species to classify them, utilizing state-of-the-art </span></span>Convolutional Neural Network (CNN) models, including VGG16, MobileNet V2, Xception, NasnetMobile, and EfficientNetV2. In contrast to prior deep learning based identification studies limited to LM images, we, for the first time, incorporated SEM images of microalgae in our analysis. Both LM and SEM microalgae images achieved an exceptional classification accuracy of 99%, representing the highest accuracy attained by the VGG16 and EfficientNetV2 models to date. While NasnetMobile exhibited the lowest accuracy of 87% with SEM images, the remaining models achieved classification accuracies surpassing 93%. Notably, the VGG16 and EfficientNetV2 models achieved the highest accuracy of 99%. Intriguingly, our findings indicate that algal identification using optical microscopes, which are more cost-effective, outperformed electron microscopy techniques.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"172 ","pages":"Article 103506"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096843282300104X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae possess diverse applications, such as food production, animal feed, cosmetics, plastics manufacturing, and renewable energy sources. However, uncontrolled proliferation, known as algal bloom, can detrimentally impact ecosystems. Therefore, the accurate detection, monitoring, identification, and tracking of algae are imperative, albeit demanding considerable time, effort, and expertise, as well as financial resources. Deep learning, employing image pattern recognition, emerges as a practical and promising approach for rapid and precise microalgae cell counting and identification. In this study, we processed light microscopy (LM) and scanning electron microscopy (SEM) images of two Cyanobacteria species and three Chlorophyta species to classify them, utilizing state-of-the-art Convolutional Neural Network (CNN) models, including VGG16, MobileNet V2, Xception, NasnetMobile, and EfficientNetV2. In contrast to prior deep learning based identification studies limited to LM images, we, for the first time, incorporated SEM images of microalgae in our analysis. Both LM and SEM microalgae images achieved an exceptional classification accuracy of 99%, representing the highest accuracy attained by the VGG16 and EfficientNetV2 models to date. While NasnetMobile exhibited the lowest accuracy of 87% with SEM images, the remaining models achieved classification accuracies surpassing 93%. Notably, the VGG16 and EfficientNetV2 models achieved the highest accuracy of 99%. Intriguingly, our findings indicate that algal identification using optical microscopes, which are more cost-effective, outperformed electron microscopy techniques.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.