Jianjun Cao, Matthew J. Belousoff, Elliot Gerrard, Radostin Danev, Madeleine M. Fletcher, Emma Dal Maso, Herman Schreuder, Katrin Lorenz, Andreas Evers, Garima Tiwari, Melissa Besenius, Ziyu Li, Rachel M. Johnson, Denise Wootten, Patrick M. Sexton
{"title":"Structural insight into selectivity of amylin and calcitonin receptor agonists","authors":"Jianjun Cao, Matthew J. Belousoff, Elliot Gerrard, Radostin Danev, Madeleine M. Fletcher, Emma Dal Maso, Herman Schreuder, Katrin Lorenz, Andreas Evers, Garima Tiwari, Melissa Besenius, Ziyu Li, Rachel M. Johnson, Denise Wootten, Patrick M. Sexton","doi":"10.1038/s41589-023-01393-4","DOIUrl":null,"url":null,"abstract":"Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a ‘bypass’ secondary structural motif (residues S19–P25). This study explored potential tuning of peptide selectivity through modification to residues 19–22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects. Cryo-EM structure and dynamics analysis provides a conformational mechanism for tuning of selectivity between calcitonin and amylin receptors through targeted lipid modification of residues 19–22 within the ‘bypass’ motif of amylin peptides.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"20 2","pages":"162-169"},"PeriodicalIF":12.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-023-01393-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a ‘bypass’ secondary structural motif (residues S19–P25). This study explored potential tuning of peptide selectivity through modification to residues 19–22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects. Cryo-EM structure and dynamics analysis provides a conformational mechanism for tuning of selectivity between calcitonin and amylin receptors through targeted lipid modification of residues 19–22 within the ‘bypass’ motif of amylin peptides.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.