Pilot study on nasal microbiota dynamics and MRSA carriage of a pig cohort housed on straw bedding.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Microbiology Pub Date : 2024-09-01 Epub Date: 2023-07-31 DOI:10.1111/mmi.15136
Natalie Effelsberg, Iris Kobusch, Hannah Schollenbruch, Sabrina Linnemann, Corinna Bang, Andre Franke, Robin Köck, Marc Boelhauve, Alexander Mellmann
{"title":"Pilot study on nasal microbiota dynamics and MRSA carriage of a pig cohort housed on straw bedding.","authors":"Natalie Effelsberg, Iris Kobusch, Hannah Schollenbruch, Sabrina Linnemann, Corinna Bang, Andre Franke, Robin Köck, Marc Boelhauve, Alexander Mellmann","doi":"10.1111/mmi.15136","DOIUrl":null,"url":null,"abstract":"<p><p>Methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted between pigs and humans on farms. Hence, the reduction of MRSA carriage in pigs could decrease the risk of zoonotic transmission. Recently, straw bedding has been found to significantly reduce MRSA carriage in pigs. The mechanisms behind this effect remain unclear but changes in the nasal microbiome may play a role. In this exploratory study, the nasal microbiota of pigs kept on straw was examined using V1/V2 16S rRNA gene sequencing. Nasal swabs were collected from 13 pigs at six different time points during the course of a full fattening cycle resulting in 74 porcine samples. In addition, straw samples were collected at each time point. Eleven out of 13 pigs were MRSA positive at housing-in. We found a strong temporal pattern in the microbial communities. Both microbial diversity and abundance of Staphylococcus species peaked in week 5 after introduction to the straw stable decreased in week 10, when all pigs turned MRSA-negative, and increased again toward the end of the fattening period. These findings show that the introduction of pigs into a new environment has a huge impact on their nasal microbiota, which might lead to unfavorable conditions for MRSA. Moreover, other Staphylococcus species may play a role in eliminating MRSA carriage. We designed a follow-up study including two different husbandry systems to further assess these effects.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"403-412"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15136","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted between pigs and humans on farms. Hence, the reduction of MRSA carriage in pigs could decrease the risk of zoonotic transmission. Recently, straw bedding has been found to significantly reduce MRSA carriage in pigs. The mechanisms behind this effect remain unclear but changes in the nasal microbiome may play a role. In this exploratory study, the nasal microbiota of pigs kept on straw was examined using V1/V2 16S rRNA gene sequencing. Nasal swabs were collected from 13 pigs at six different time points during the course of a full fattening cycle resulting in 74 porcine samples. In addition, straw samples were collected at each time point. Eleven out of 13 pigs were MRSA positive at housing-in. We found a strong temporal pattern in the microbial communities. Both microbial diversity and abundance of Staphylococcus species peaked in week 5 after introduction to the straw stable decreased in week 10, when all pigs turned MRSA-negative, and increased again toward the end of the fattening period. These findings show that the introduction of pigs into a new environment has a huge impact on their nasal microbiota, which might lead to unfavorable conditions for MRSA. Moreover, other Staphylococcus species may play a role in eliminating MRSA carriage. We designed a follow-up study including two different husbandry systems to further assess these effects.

Abstract Image

关于使用稻草垫料饲养的猪群鼻腔微生物群动态和 MRSA 携带情况的试点研究。
耐甲氧西林金黄色葡萄球菌(MRSA)可在农场的猪和人之间传播。因此,减少猪的 MRSA 携带量可降低人畜共患病传播的风险。最近,人们发现稻草垫料能显著减少猪的 MRSA 携带。这种效果背后的机制尚不清楚,但鼻腔微生物组的变化可能起到了一定的作用。在这项探索性研究中,我们使用 V1/V2 16S rRNA 基因测序法检测了使用稻草饲养的猪的鼻腔微生物群。在整个育肥周期的六个不同时间点收集了 13 头猪的鼻拭子,共获得 74 份猪样本。此外,还在每个时间点采集了稻草样本。13 头猪中有 11 头在入舍时 MRSA 呈阳性。我们发现微生物群落有很强的时间模式。金黄色葡萄球菌的微生物多样性和丰度在引入秸秆后的第 5 周达到峰值,在第 10 周下降,此时所有猪的 MRSA 均为阴性,并在育肥期结束时再次上升。这些研究结果表明,将猪引入新环境会对其鼻腔微生物群产生巨大影响,从而可能导致 MRSA 的不利条件。此外,其他葡萄球菌也可能在消除 MRSA 携带方面发挥作用。我们设计了一项包括两种不同饲养系统的后续研究,以进一步评估这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信